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Abstract

This library of simulations utilizes an advanced ODE solver called
the Taylor Center capable to integrate initial value problems with high
accuracy and to display solutions as real time animations in 2D and 3D
stereo (viewable via red/blue glasses).

These unique graphical features and the user friendly interface provide
the environment of a virtual laboratory allowing to observe the important
dynamic behavior of the problems collected in the library, and to experi-
ment modifying the initial values - as though during the real life laboratory
work.

This �rst issue of the Exploratorium illustrates various type of motion
of a rigid body.
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Preface
This is an Exploratorium of the rigid body motion, i.e. a collection of simulations
for running via the advanced ODE solver called the Taylor Center [1], which
integrates and displays real-time animation of the rigid body in 3D stereo to
view through a pair of red/blue glasses, or conventionally as a 3D axonometry.
For every simulation the "real-time animation" is "real-time" in the sense that
the motion is displayed obeying the appropriate acceleration or deceleration
within the user speci�ed (or pre-loaded) Play time interval (in seconds). At
that, the internal time t (analogous to the physical time) for every animation is
displayed below the play time so that users can calculate the rate between the
physical1 and play time2 .
Visualization of the rigid body here is achieved via appropriate sets of points

�xed in the body. Those points outline the body as it rotates in a real-time. Such
an outlining via the �xed points appears to be a reasonable compromise for the
challenge of artful visualizing a rigid body in a real-time, because rendering
the body surface with texture and features would be prohibitive for a real-time
algorithm of the visualization.
These simulations of the rigid body motion are based upon the mathematical

models presented by Dmitry Garanin [2], Mark Ashbaugh (and coauthors) [7],
and Chloe Elliott [9], dynamically visualizing those models with a possibility to
change the parameters and view the e¤ects.
The three important cases of the rigid body motion considered here are:

� A rolling disk [2];

� A free top [2-7];

� A heavy top under gravity [9].

In particular here we are to consider a remarkable case of the free top spin-
ning around the middle principle axis, mathematically analyzed in 1991, [7], and

1Even speaking about the physical time, in all animations here we use the internal unitless
values of time, mass, length, and accelerations selected just in order that it be easier to
demonstrate and play the processes of interest. For example, in the cases of rolling disk and
heavy top, where gravity matters, in some cases the expression Mg is set to 1, in others - to
10. Similarly, other initial values such as angular velocities !; _ which together with Mg
a¤ect the duration and speed of the process, are chosen also merely to provide a comfortable
playing time and visually detectable rotation. Therefore, when the user wishes to compare
similar processes in terms of their visible speed and duration, it is necessary to check if the
values Mg; !; _ in the section Constants are the same for the processes being compared, as
well as the desired internal time segment and the rate for the play time.

2The rate between the physical vs. play time is not the same in all the simulations. The
pre-loaded play time in most of the simulations was chosen merely in order to be not too
long and too annoying (something within 60 sec.), while the problem physical time may vary
dramatically. Sometimes for sequences of simulations representing a particular case, all the
crucial parameters a¤ecting the physical time were set the same, and the play time was set in
the same rate to the physical time so that the viewer could adequately perceive the "reality"
of the animation. For other animations no care was taken to keep the same rate between the
physical time and play time.
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experimentally observed in weightlessness in 1985 by the cosmonaut Vladimir
Dzhanibekov (USSR), see the video [6].
Each of the three cases requires a particular set of ODEs. Beside the ODEs

in the mathematical form (as in the sources), we will show how they are entered
into the software.
Below is the table of correspondence between the mathematical notation and

its computer equivalents.

_� te1
�� te1�
_� �1
�� �1�
 psi
_ psi1
xc xc
yc yc
zc zc
I 01 i11
I2 i2
I 03 i31

�x ksix
�y ksiy
�z ksiz
Fx Fx
Fy Fy
� Pi
�jt=0 te0
_�jt=0 te10
�jt=0 �0
_�jt=0 �10
L3 L3
L3jt=0 L30

In this software, the systems of ODEs must be represented as systems of
explicit �rst order ODEs, so that second order derivatives like �� or �� are
represented via additional variables _� = �1 so that �� = _�1 entered as

te0 = te1;

te10 = expression for this second order derivative

:::

Here �rst order derivatives in the left hand sides of the computer input are
designated with apostrophe �(ASCII code 2716 = 3910) playing the role as the
prime sign. We preserve the original notation of the referred authors, where
derivatives are dotted, and prime sign in some constants (like I 01) has nothing
to do with derivatives.

We use the terminology angular momentum L and principal moments of
inertia I1; I2; I3 of a rigid body.
The choices of particular points �xed in the body are such as 10 points on

the circumference of the rolling disk, or 5 such points in a spinning symmetric
top, or the vertices of spinning rectangles or triangles. In order to transform
the points of the spinning body (�xed in the body and expressed via the Euler
angles �; �;  ) into the lab system of coordinates, we use the rotation matrix
(42) in [2]

A =

0@ cos� cos � cos � sin� sin � cos� sin � cos � sin� cos sin � sin�
sin� cos + cos � cos� sin � sin� sin + cos � cos� cos � sin � cos�
sin � sin sin � cos cos �

1A
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written for a special case when  = 0 (sin = 0; cos = 1) :

A0 =

0@ cos� � cos � sin� sin � sin�
sin� cos � cos� � sin � cos�
0 sin � cos �

1A : (1)

Terminology

Here we are to clarify the terminology related to the Euler�s angles (or their
derivatives) often called "spin" _ , "precession" _�, and "nutation" �.
Consider a vector v(t) = (x(t); y(t); z(t)) in resting system of coordinates.

Vectors have their length jvj =v =
p
x2 + y2 + z2 and the direction de�ned by

the cosines (x=v; y=v; z=v).
In particular, the speed of instantaneous rotation of a rigid body is a vector

!, and the absolute speed or the spin of rotation is j!j. If the direction of !
is changing with time, we say that the spinning axis of the body performs a
precession. For example, Earth spins about its axis 1 turn a day, and the axis of
Earth makes a slow precession outlining approximately a surface of a right cone
with a period about 26,000 years. More accurately, the axis outlines a wavy
surface in which the waves are called nutation. That�s the meaning in which we
further understand the terms "spin", "precession", and "nutation".
Unlike Earth, an arbitrary rigid body may rotate about the center of mass

in a quite irregular manner so that it is impossible to clearly distinguish its spin,
precession, and nutation.
The Euler�s angles are one of various ways to represent an arbitrary angular

increment of vector ! as a sum of three consequential turns: namely by those
special Euler�s angles �; �;  whose velocities traditionally are also called "spin"
_ , "precession" _�; and "nutation" � (not a velocity). However, such naming
is in con�ict with the earlier de�ned concepts of spin, precession, and nutation,
because according to the formula (15) in [2])

! = _�eN + _�ez + _ e(3)

j!j2 = _ 
2
+ _�

2
+ _�

2
+ 2 _ _� cos �;

so that the speed of instantaneous rotation ! of a body is a combination of all
three Euler�s angular velocities.
Similarly, speaking about the direction of ! in a �xed system (according to

formula (18) in [2]),

! = ( _ sin � sin�+ _� cos�)ex + (� _ sin � cos�+ _� sin�)ey+( _ cos � + _�)ez;

so that again each component of the direction of ! is a function of all three
Euler�s angles and velocities.
The terms "spin", "precession", and "nutation" applied to the Euler angles,

even though holding some geometrical sense, create confusion with the meaning
of these terms for a rigid body. Therefore, in order to avoid this confusion,
further on we refer to the Euler�s angles �; �;  just by their Greek letters.

6



Installation and running the simulations

In order to run and play with these simulations, you need to download and install
the software, and then the folder with the Rigid Body script �les following a
simple procedure explained in Appendix 1. Most of the simulations are in 3D
stereo appearing as red and blue curves on the black background. You will need
a pair of red/blue glasses for stereo viewing (or otherwise to view in a mode of
conventional axonometry by clicking the respective button). Some simulations
display conventional 2D curves (colored in di¤erent colors) appearing on the
white background (for which you obviously do not need red/blue glasses).
While studying and playing with this Exploratorium, it is convenient to keep

the software Tcenter.exe loaded. When you need to run a particular script �le
mentioned in this text, select and copy the �le name into the clipboard and
follow one of several methods of running the selected script �le explained in the
Appendix.
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Figure 1: The rolling disk and coordinates from [2] p. 24
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Rolling disk
Folder: RollingDisk.

The ODEs in the mathematical form

The ODEs (156), (159) in [2] for a rolling disk are:

�� =

�
�L3 + I2 _� cos �

�
_� sin � �MgR cos � + FxR sin � sin�

I 01

d

dt

�
_� sin �

�
=

�
L3 � I 01 _� cos �

�
I2

_�

_L3 = MR2 _� _� sin � � FxR cos�

_xc = R

�
_� sin � sin�� L3 cos�

I 03

�
_yc = �R

�
_� sin � cos�+

L3 sin�

I 03

�
where

I 01 =
I

2
+MR2; I2 =

I

2
; I 03 = I +MR2;

L3 = I 03(
_ + _� cos �)

with understanding that for a homogeneous disk I1 = I2 =
I

2
; I3 = I:

We re-wrote them using the expression for L3 into a system containing all
Euler angles �; �;  :

�� =

�
�L3 + I2 _� cos �

�
_� sin � �MgR cos � + FxR sin � sin�

I 01
(2)

�� =
L3 � (I 01 + I2) _� cos �

I2 sin �
_�

_ =
L3
I 03
� _� cos �

_L3 = MR2 _� _� sin � � FxR cos�

_xc = R

�
_� sin � sin�� L3 cos�

I 03

�
_yc = �R

�
_� sin � cos�+

L3 sin�

I 03

�
Typically the solid body motion equations are written in the rotating system

of coordinates which is �xed with the rotating body. Dmitry Garanin trans-
formed them into the laboratory system, where the disk position is expressed
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via the Euler angles �; �;  (the picture on page 24 in [2]). The meaning of
these angles in a case of motion of a declined disk is:

� is the tilt of the disk to the plane ( _� being a velocity or change of the tilt
during non-uniform motion);

_ is the angular velocity of the intrinsic rotation of the disk around its axis
perpendicular to the disk at its center;

_� is the angular velocity of the node line - the line of intersection of the disk
plane and horizontal plane. In particular, if a disk is positioned perpendicularly
to the plane and spins around its diameter perpendicular to the plane, _� is the
angular velocity of this rotation.
As explained in [2],

L3 = I 03(
_ + _� cos �) (3)

is a component of angular momentum.

Remark 1 This system of ODEs requires the initial values for �; _�; �; _�;  ; L3; xc; yc
at t = 0: However, considering the known equation for L3 (3), L3 and _ are
related. If we specify one, we automatically get the other. Therefore in some
cases we specify L3jt=0, in others it�s more convenient to specify _ jt=0 instead.

We are going to consider the following groups of cases.

1. Examples visualizing the meaning for each of the angular velocities _�; _�; _ 
(folder EachAngleActions);

2. The special cases of uniform motion when �; _�; _ remain constant (folder
UniformMotion). The subcase when the center of the disk remains still
during the motion - the so called Euler disk [5].

3. Examples of interesting dynamic from Dmitry Garanin [2] (folder Gara-
ninExamples);

Method of visualization

We achieve visualization of the moving disk via setting 11 trajectories

fx0; y0; z0g
:::

fx9; y9; z9g
f�x; �y; �zg

(see the pageGraph setting in the Main window of the program). Here fxi(t); yi(t); zi(t)g
represent 10 evenly placed �xed points at the edge of the disk. For them
only their motion is displayed without plotting the trace of the motion, while
f�x; �y; �zg represents the trajectory of the Contact Point, and this trajectory
is plotted. (This is achieved due to the setting Parameters/Plot beginning with
the curve # 11 in the Graph window).
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Equations in the software

Script �le: L3Declined1.scr

The constants.

Pi = 3.141592653589793238462643
p5 = Pi/5
M = 1
g=100
R = 1
MR2 = M*R^2
MgR = M*g*R
i = 1
Fx = 0
te0 = 0.5
te10 = 0
i2 = i/2
�0 = Pi/2 {�(0)}
i11 = i/2 + MR2 {i1�}
i31 = i + MR2 {i3�}
L30 = 10
�10 = (L30 - sqrt( L30^2 + 4*i2*MgR * (cos(te0))^2/sin(te0))) / (2*i2*cos(te0))

The Initial values

t = 0
te = te0
� = �0
Psi = 0
te1 = te10 {te�(0)}
�1 = �10 {��(0)}
L3 = L30
xc = 0
yc = 0

Auxiliary variables

coste = cos(te)
sinte = sin(te)
cos� = cos(�)
sin� = sin(�)
cospsi = cos(psi)
sinpsi = sin(psi)
cos�coste = cos�*coste
sin�coste = sin�*coste
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te1sinte = te1*sinte
�1coste = �1*coste
zc = R*sinte {Center of mass z}
ksix = xc + R*coste*sin� {Contact point on plane x }
ksiy = yc - R*coste*cos� {Contact point on plane y}
ksiz = 0 {Contact point on plane z}
cospsi1 = cos(psi + p5)
sinpsi1 = sin(psi + p5)
cospsi2 = cos(psi + p5*2)
sinpsi2 = sin(psi + p5*2)
. . . . .
cospsi9 = cos(psi + p5*9)
sinpsi9 = sin(psi + p5*9)
x0 = xc + R*( cos�*cospsi - sin�coste*sinpsi ) {a �xed point at the edge

of the disk, x}
y0 = yc + R*( sin�*cospsi + cos�coste*sinpsi ) {a �xed edge point y}
z0 = zc + R*sinpsi*sinte {a �xed point at the edge of the disk, z}
. . . . .
x9 = xc + R*( cos�*cospsi9 - sin�coste*sinpsi9 )
y9 = yc + R*( sin�*cospsi9 + cos�coste*sinpsi9 )
z9 = zc + R* sinpsi9*sinte

Here 0@ xi
yi
zi

1A = A0 �

0@ R cos i
R sin i
0

1A
where A0 is the rotation matrix (1).

ODEs

t�=1
te�= te1
��= �1
Psi�= L3/i31 - �1coste
te1�= ( (i2*�1coste - L3)*�1*sinte - MgR*coste + Fx*R*sinte*sin� )/i11
�1�= (L3 - (i11 + i2)*�1coste)*te1/(i2*sinte)
L3�= MR2*te1sinte*�1 - Fx*R*cos�
xc�= R*(te1sinte*sin� - L3*cos�/i31) {Center of mass x}
yc�= -R*(te1sinte*cos� + L3*sin�/i31 ) {Center of mass y}
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Visualizing the meaning for each of the angular
velocities _ ; _�; _�

(folder EachAngleActions)

The meaning of _ :

Let�s begin with rotation of the disk with angular velocity _ . To isolate this
motion, we set the tilt of the disk �jt=0 = �=2 (perpendicularly to the plane)
and _�jt=0 = _�jt=0 = 0 expecting the disk roll along a straight line.
Load script �le PsiOnlySpinVert.scr and click the Play button.
Watch the disk rolling with the angular velocity _ = const = 10 (psi10=10)

in vertical position with uniform speed along the straight line.
If the initial tilt of the disk �jt=0 is not perpendicular, even with initial

velocities _�jt=0 = _�jt=0 = 0 they will not remain zero (which we want in order
to watch only _ e¤ect).
We cannot set tilt �jt=0 = 0 because sin � is in the denominator of the

equation for �1�. We can watch however the motion when �jt=0 is near zero.
Load script �le PsiOnlySpinNearHoriz.scr and click the Play button.
Watch the disk rolling near horizontally with angular velocity _ near 30

along a circular-like curve (though not a circle). The tilt of the disk slightly
varies. In order to see that, click Graph setting tab in the main window. While
there, click 2D button (which clears the set of trajectories). Now specify the
curve te(t). In order to do it, �rst click intersection of t with X axis, and then
click the intersection of te with Y axis. That would set the curve {t, te}. Now
click Graph. It will show you a sine-like wave of variation of the tilt between
0:08 and 0:1 of radian.

The meaning of _�:

This is an angular velocity of the node line. To isolate this motion, we set the
tilt �jt=0 = �=2 (perpendicularly to the plane) and _ jt=0 = _�jt=0 = 0:
Load script �le FiOnlySpin.scr and click the Play button.
Watch the disk spinning around the vertical diameter with the angular ve-

locity _� = const = 10 (�10=10).

The meaning of _�:

This is velocity of the change of tilt � of the disk. To isolate this motion, we
must set _ jt=0 = _�jt=0 = 0: In doing so, if we leave tilt of the disk �jt=0 = �=2
perpendicularly to the plane, no motion may happen as this is a position of
equilibrium (though unstable). In order to trigger the motion, we must either
provide a small push _�jt=0 = 0:01; or set the initial tilt of the disk slightly less
than �=2: Let�s try both.
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Load script �le TetaOnlyFall.scr (with a small push _�jt=0 = 0:01) and click
the Play button.
The disk starts falling slowly, accelerates, and ... What?! It falls through

the plane as though the plane didn�t exist, continuing its motion as though a
rigid pendulum.
You can see the same paradox loading script �le TetaOnlyFallPendulum.scr

(with a �jt=0 = �=2 � 0:01; all angular velocities being zero). Again you will
see the behavior of rigid pendulum, but now swinging back and force (and
disregarding the plane too). D. Garanin refers to the similar pendulum-like
behavior of the heavy top on page 19 in [2].
The explanation of this paradox is that with _ � _� � 0 (and Fx = 0) the

�rst ODE of the system (2) really turns into the equation of a pendulum

�� = �MgR cos �

I 01
(4)

written for an angle complementary to �=2 so that we have cosine instead of sine
(as in the standard pendulum ODE). The ODE (4) describes also the motion
of a disturbed vertical stick or vertical ladder falling down presuming that such
a stick-like object is �xed with a hinge as a pendulum and moves disregarding
"obstacles" such as horizontal plane.
Now load script �le TetaOnlyFallWithSmallFi.scr where we added only a

negligible initial angular velocity _�jt=0 = 0:001 around the vertical diameter of
the disk: can such a negligible addition change the "free pendulum" behavior
of the disk which falls not "noticing" the plane? Click the Play button.
Amazingly, now the disk does not fall and swing as a pendulum any more,

but fully "acknowledges" the existence of the plane, rolling along a cycloid-like
curve: almost �at falling and then standing up again, on and on!
Load TetaOnlyFallWithSmallFiLong.scr and watch a longer period of such

motion noticing that the cycloid-like curve outlines some large circle.
Well, then how does a small _ a¤ects the "fall" of a near steady disk?
Load script �le TetaOnlyFallWithSmallPsi.scr where we added only a negli-

gible initial angular velocity _ jt=0 = 0:001 around the axis of the disk: can this
negligible addition change the "free pendulum" behavior of the disk ignoring
presence of the plane? Click the Play button.
Now the disk also does not fall through as a pendulum any more. Again

it "acknowledges" the existence of the plane, but rolls along a sine-like curve:
almost �at falling and then standing up again, on and on!
Load TetaOnlyFallWithSmallPsiLong.scr and watch a longer period of such

motion noticing that now this sine-like curve outlines a straight line (rather than
circle).

Remark 2 If the disk in the initial position slightly deviating from the vertical
has zero angular velocities _ and _� so that its interaction with the plane takes
place only via one point of touch at the initial position, the only force a¤ecting
the disk is gravity causing it to "fall" as a rigid pendulum ignoring existence of
the plane. However, with at least one of the velocities _ or _� being nonzero,
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the center of mass of the slightly declined disk begins moving along a curve with
nonzero curvature. As a result, in addition to gravity, two more forces emerge:
the centrifugal force caused by the motion along a curve, and the gyroscopic
reaction caused by the gravity and precession of the axis of spin. It is these
two additional forces which make the di¤erence in the behavior of the disk in
comparison with the pendulum-like behavior. More about that - in the subsection
"Discussion".

One more observation of a technical nature.

Remark 3 In the case TetaOnlyFall.scr of "fall", the tilt �; beginning with �=2;
goes down bypassing the zero value. However, the 2nd of the ODEs (2) contains
sin � in the denominator. In most cases an attempt to integrate bypassing a
point of singularity of the ODE fails no matter whether the solution is regular
or not at this point - and with the initial values of this case the solution is regular
when � = 0. It is because of the regularity of the solution and small values of
its Taylor coe¢ cients the program applies such a large integration step, that by
mere chance it bypasses the point where � = 0 so that the integration succeeds.
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The special cases of uniform motion when �; _�; _ 
remain constant

(subfolder UniformMotion)
Intuitively we can imagine such a physical setting that the disk rolls along

the circumference with constant tilt 0 < � < �=2 and constant angular velocities
_�; _ in such a way that all forces acting on the disk are mutually cancelled so
that the disk performs uniform motion. We are to demonstrate, that such a
solution of the system (2) does exist. We assume, indeed, that Fx = 0 (no
external horizontal forces).
Observe that if �(t) = const ( _� = 0) is the solution of the system (2), then

also _� = const (�� = 0); _ = const; L3 = I 03(
_ + _� cos �) = const satisfy the

system (2) too. With that in mind, set a condition that the right hand side of
the ODE for �� be zero:�

�L3 + I2 _� cos �
�
_� sin � �MgR cos � = 0:

We are to show, that it is possible to satisfy this condition for an arbitrary � and
a few other arbitrarily given parameters. There are two approaches for solving
this equation in _� for a given tilt �:

1. In addition to the given �, choose some value L3 > 0. Then the equation
above turns into the following square equation in _�:

I2 _�
2
cos � sin � � L3 _� sin � �MgR cos � = 0

whose solutions are

_�1;2 =
L3 sin � �

q
L23 sin

2 � + 4I2MgR cos2 � sin �

2I2 cos � sin �

or

_�1;2 =
L3 �

p
L23 + 4I2MgR cos2 �= sin �

2I2 cos �
: (5)

Observe that both solutions are real. As
4I2MgR cos2 �

sin �
> 0, _�1;2 have

opposite signs. Therefore, given constants � and L3, two values of _� are
computed based on (5), and then - the respective two values of _ based on
(3): these two sets of values provide two uniform solutions of the source
system of (2) for the given � and L3.

2. In addition to the given �, choose some value _ . Then the equation above
turns into the following square equation in _�

_�
2
(I2 � I 03) cos � sin � � _�I 03

_ sin � �MgR cos � = 0
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whose solutions are

_�1;2 =
I 03
_ sin � �

q
(I 03
_ sin �)2 + 4MgR cos2 �(I2 � I 03) sin �
2(I2 � I 03) cos � sin �

(6)

=
I 03
_ �

q
(I 03
_ )2 � 4MgR cos2 �(I 03 � I2)= sin �
2(I2 � I 03) cos �

:

Here I 03 � I2 = I +MR2 � I

2
=
I

2
+MR2 > 0. In order that the roots be

real, it must be that

_ >

s
4MgR cos2 �(I 03 � I2)

I 03 sin �
= _ thresh

and then both _�1;2 are of the same sign. Therefore, given some constant
� and _ , two values of _� are computed based on (6), and then - the
respective two values of L3 based on (3): these two set of values also
provide uniform solutions of the source system (2). However, unlike in the
Case 1, here the initial value _ must be big enough in accordance with
the inequality above.

Let�s determine the trajectory of the center of mass.

Theorem 1 For both of the solutions _�1;2, the trajectory of the center of mass
is a circumference with two possible radii.

Proof. Assume that xc and yc represent some circumference with radius r

xc = a� r sin�
yc = b+ r cos�

so that

_xc = �r _� cos� (7)

_yc = �r _� sin�

(in our case _� = const). Re-write the equations for _xc and _yc in the source
ODEs (2) under a condition that _� � 0

_xc = �RL3 cos�
I 03

_yc = �RL3 sin�
I 03

:

Comparing it with (7) we get

_xc = �r _� cos� = �RL3 cos�
I 03

_yc = �r _� sin� = �RL3 sin�
I 03
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so that the radii of the circular trajectories for two values of _�1;2 are

r1;2 =

8>>>><>>>>:
R

����� L3

I 03
_�1;2

����� (L3 is given)

R

����� _ 
_�1;2

+ cos �

����� ( _ is given)

(8)

and the centrifugal acceleration3 is

_�
2
r =

8>><>>:
R

�����L3 _�1;2I 03

����� (L3 is given)

R
��� _ _�1;2 + _�

2

1;2 cos �
��� ( _ is given)

:

Remark 4 For the bigger of the two _�1;2 the r1;2 is smaller.

Remark 5 For the bigger of the two _�1;2 the centrifugal acceleration or the
centrifugal force is bigger. In particular, if _�2 > _�1 then

Centrifugalj _�2 > Centrifugalj _�1 ; (9)

and for the z-projections for the same tilt �

Centrifugalzj _�2 > Centrifugalzj _�1
acting up against the gravity, so that the following balance of forces must take
place:

(Gyroscopicz+Centrifugalz�Gravity)j _�1 = (Gyroscopicz+Centrifugalz�Gravity)j _�2 = 0

or

(Gyroscopicz + Centrifugalz)j _�1 = (Gyroscopicz + Centrifugalz)j _�2
so that

Gyroscopiczj _�2 < Gyroscopiczj _�1 : (10)

Further on, in the examples illustrating this uniform motion, we arbitrarily
choose � and an angular momentum L3 obtaining the rest of the initial values
by the known formulas. In the following simulations we are to experiment with

3Two reaction forces whose sum prevents the disk from falling are the centrifugal and
gyroscopic reaction: both caused by precession _� of the disk.
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both choices of sign in the formula (5). Here are de�ntions of the constants for
this set of problems.

Pi = 3.141592653589793238462643
p5 = Pi/5
M = 1
g=100
R = 1
MR2 = M*R^2
MgR = M*g*R
i = 1
Fx = 0
te0 = 0.5
te10 = 0
i2 = i/2
�0 = Pi/2 {�(0)}
i11 = i/2 + MR2 {i1�}
i31 = i + MR2 {i3�}
L30 = 10
�10 = (L30 + sqrt( L30^2 + 4*i2*MgR * (cos(te0))^2/sin(te0))) / (2*i2*cos(te0))

The last line corresponds to formula (5), and the �rst "+" in it corresponds
to selection of "+".
Load and play script �les L3DeclinedPlus.scr, and then L3DeclinedMinus.scr

paying attention to di¤erence in the diameter of the trajectory of the center of
the disk and velocity of rolling. These two cases represent the same initial value
of tilt � = 0:5 radian (28:6�). With selection of "+" in (5), _�jt=0 = 34:7831,
while with selection of "�", _�jt=0 = �11:9933. In both cases the internal time
segment is t 0:8 and the playing time 8 sec. so that visually observed velocity
of rolling in both cases is consistent. Given both values of _�jt=0, we see that the
absolute angular velocity of the rolling along its circle in the case "+" is about
3 times faster. You can see all these values inspecting the Debugging page.

Now load and play script �les L3NearVertPlus.scr, L3NearVertMinus.scr
also paying attention to di¤erence in radii of the trajectory and velocity of
rolling. These two cases represent the same initial value of tilt � = 1:4 radian
(80:2�).
With selection of "+" in (5), _�jt=0 = 119:37, internal time segment is t 0:3,

and playing time 6 sec.
With selection of "�", _�jt=0 = �1:7, internal time segment is t 6, and

playing time 30 sec. - i.e. 4 times shorter then it is required to preserve con-
sistency with the case "+". You can set the playing time 120 sec. to achieve
consistency and realize how slow is the motion in this "�" case.
Given both values of _�jt=0, we see that the absolute angular velocity of the

rolling along its circle in the case "+" is about 70 times faster.
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L3 = 10; � = 28:6� "+" "�"
_�jt=0 34:78 �11:99
_ jt=0 �25:52 15:52
Diameter 0:29 0:8
Centrifugal 173:9 60

L3 = 10; � = 80:2� "+" "�"
_�jt=0 119:37 �1:7
_ jt=0 �15:28 5:28
Diameter 0:08 5:8
Centrifugal 596:8 8:5

The L3NearVertPlus.scr case behaves similarly to the exactly vertical case
FiOnlySpin.scr ( in RollingDisknEachAngleAction) considered in the section
Visualizing the meaning for each of the angular velocities.

In the subfolder PsiFixed there are the similar script �les with the same
names where the given value is _ jt=0 (rather than L3), and then _�jt=0 and L3
obtained. The last two lines of constants there are

Psi10=25
�10 = (i31*Psi10 - sqrt( (i31*Psi10)^2 + 4*(i2 - i31)*MgR * (cos(te0))^2/sin(te0)))

/ (2*(i2 - i31)*cos(te0))
L30 = i31*(Psi10 + �10*cos(te0))

With all other constants as they are...

� for � = 0:1 (�les Declined01Plus.scr and Declined01Minus.scr) there must
be _ > 17:24; ( _ = 20);

� for � = 0:5 (�les DeclinedPlus.scr and DeclinedMinus.scr) there must be
_ > 6:94; ( _ = 8);

� for � = 1:4 (�les NearVertPlus.scr and NearVertMinus.scr) there must be
_ > 0:94; ( _ = 2).

The Euler Disk.

An interesting sub-case of this uniform motion is the case when the center of the
mass remains still during the disk motion. Examining the ODEs (2) for _xc; _yc;
we see that because _� = 0, they may be zero only if the constant L3 = 0: That
means that in order to extract the Euler case from the general case of uniform
motion, we must set L3 = 0 and then getting

_� =
�
p
4I2MgR cos2 �= sin �

2I2 cos �
= �

r
MgR

I2 sin �
:

That�s the initial constant value for _� depending on the tilt � for the Euler
case.
Load and play script �les Euler45.scr, EulerNear90.scr, EulerNearFlat.scr

displaying the uniform motion with the center of the disk resting.
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Discussion.

It�s instructive to analyze all the cases of the uniform motion presented above
qualitatively.
In the Euler case the center of mass rests, and the only force counteracting

the gravity is the gyroscopic reaction. Under the gravity, the axis of rotation of
the disk turns (precesses) along a direct circular cone generating a gyroscopic
force having a constant component upward exactly countering the gravity.
In the general situation of the uniform rotation, the center of the mass

moves along a circumference generating also a centrifugal force whose component
counteracts the gravity acting upward together with the gyroscopic reaction -
see the formulas (9), (10).

Examples from Dmitry Garanin in [2]

(folder GaraninExamples)
The following explanation of the examples comes from the section 4.1.3 in

[2].
Example 1. The parameters of the wheel are set to M = R = I = 1. The

results show that a rolling wheel never falls on a side in spite of the gravity
torque. Rolling with the rotation around the symmetry axis is pretty stable.
Applied force Fx tends to accelerate the wheel�s motion in the direction of the
force. If the wheel�s initial rotation is very slow, it nearly falls �at but, as
� approaches 0 or �, the rotation dramatically increases so that both _� and
_ become large and the sign of _� gets reversed. During the short nearly-fall
time interval both the Center of Mass (CM) and the contact point assume large
velocities and the contact point makes a bow around the CM. Then the wheel
stands up again until the next fall on one of the sides.
One of the numerical solutions in the nearly falling regime is presented below.
Load and play the script �le NearFlatFall1.scr.
The forces are Mg = 100 and Fx = 0. The initial conditions were xc(0) =

yc(0) = 0, �(0) = �=2, �(0) = �=2 and _�(0) = 0:01, _�(0) = 0, _ (0) = �0:001.
That is, in the initial state the wheel is upright, its plane is parallel to the y-axis
and it begins rolling very slowly in the positive y direction because _ (0) < 0.
However, a small push in the positive x direction, _�(0) = 0:01, together with
the gravity torque cause the wheel to nearly fall �at. The CM begins to move
to the right and almost reaches the surface. But because of the small initial
rotation the derivatives _� and _ strongly increase and the wheel making a fast
rotation with displacement stands up again.
In order to see the changes of the �; �;  load and play the script �le

NearFlatFall1TeFiPsi.scr . It demonstrates �(t) nearly falling and recovering.
� shows that the wheel is rapidly precessing in alternating directions when the
wheel nearly hits the ground, while  demonstrates at those moments how the
wheel is rapidly rotating around its symmetry axis too.
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Let us discuss now the motion of the Center of the Mass (CM) and of the
Contact Point (CP).
In order to watch the vertical motion of the CM, in the main window under

the tab Graph setting click Clear and specify the curve {t, zc} by clicking �rst
intersection of t and X axis, and then zc and Y axis. Click Graph. Then the
Graph window will display Z(t) and you may Play it to see the dynamic.
Then, in order to watch the horizontal motion of the CM and CP load and

play the script �le NearFlatFall1CM-CP.scr . One can see that as the wheel
nearly touches the ground CP makes a half-circle around CM.

Example 2. This is the same as Example 1 except that now _�(0) = 0:254 .
It causes the CM of the wheel to make circles. Load and play the script �le
NearFlatFall2.scr . _�(0) > 0 also makes the CP motion of a cycloid type.
Load and play the CM-CP curves only: NearFlatFall2CM-CP.scr .

Example 3. This is the same as Example 1 but adding also a horizontal
force Fx = 0:03 (while leaving _�(0) = 0:25 as in Example 2). Load and play
NearFlatFall3.scr : the external force makes the CM motion of a cycloid type.
Watch it also in a plane version: NearFlatFall3CM-CP.scr .

Example 4. Reversing the sign of the force Fx = �0:03 (with the same
_�(0) = 0:25) completely changes the character of the motion. Load and play
NearFlatFall4.scr .
With a longer time interval, one can see the change of regime after some

time - script �le NearFlatFall4Longer.scr (page 35 in [2]).

Example 5. With all the same but the faster _�(0) = 1; the motion becomes
even more complicated - NearFlatFall5.scr .

4 In the original article [1] _�(0) = 0:1 and I have no clari�cations from the author.
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Free top
Folder: FreeTop

A �gure for the free top parameters from [2] p. 13
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The physical setting

Here we are considering a rigid body to which...

a) either no forces are applied,

b) or even if some forces are applied, their resultant force towards the rigid
body is zero, and the momentum of those forces in respect to the center
of the mass is zero.

The case (a) is possible only if the body is in a remote interstellar space. A
more realistic setting is (b) taking place when...

1. The body freely �ies in a uniform gravitational �eld.

2. The body freely �ies in a non-uniform gravitational �eld being negligibly
small in comparison with the variation of the �eld within its volume5 : for
example a satellite, a space probe or its part �ying in the Solar system.

3. A rigid body at the surface of Earth installed in a three-ring gimbal with
near zero friction at the axes so that the center of the rotating mass stays
still for any position of the rings of the gimbal. The forces acting at the
body in such a case are: the weight applied to the center of the mass
vs. the reaction forces in the ring bearings compansating the weight in
accordence with (b). If the body has an axial symmetry (say I1 = I2), this
arrangement represents a gyroscope (16).

The ODEs in the mathematical form

The ODEs (86) in [2] for a free asymmetric top in original form are

_� =

�
1

I1
� 1

I2

�
L sin � sin cos 

_� =

�
sin2  

I1
+
cos2  

I2

�
L (11)

_ =

�
1

I3
� sin

2  

I1
� cos

2  

I2

�
L cos � =

�
L

I3
� _�

�
cos �

where �;  ; � are Euler�s angles. The angular momentum L = const in the
laboratory system, L = fLx; Ly; Lzg so that it is assumed Lx = Ly = 0; while
Lz = L:

Remark 6 These ODEs demonstrate, that if the initial angular momentum
L = 0, the body rests still. Otherwise, if L 6= 0; this IVP for the ODEs of a free
top depend only on the initial angular positions �;  ; � at t = 0.

5Celestial bodies of a �nite size in a non-uniform gravitational �eld do not behave as a free
top because they are under various forces acting on their various parts (tidal forces).
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Observe that the ODEs for _� and _ alone comprise a consistent system of
two ODEs, which makes it possible later to construct a plane phase portrait
f�(t);  (t)g for this sub-system (Fig. 1).
In the system of coordinates �xed in the body, I1; I2; I3 stand for the 3

principal moments of inertia of the body obeying the triangle inequalities. In
order to ensure this, we arbitrarily choose three values a > b > c (in presumption
that they represent the dimensions of some parallelepiped) and then we set

I1 = b2 + c2

I2 = a2 + c2

I3 = a2 + b2

which guarantees that values I1 < I2 < I3 satisfy the triangle inequalities

I1 + I2 � I3

I1 + I3 � I2

I2 + I3 � I1:

For the corresponding L1; L2; L3 in the coordinates �xed in the body the
following formulas (84) in [2] take place

L1 = L sin � sin ; L2 = L sin � cos ; L3 = L cos � (12)

where L1; L2; L3 are components of the angular momentum in respect to the
principal moments of inertia I1; I2; I3 �xed in the body.
Using the formulas of trigonometry

sin cos =
1

2
sin 2 ; sin2  =

1� cos 2 
2

; cos2  =
1 + cos 2 

2

we obtain a simpler form of the equations (11):

_� =
L

2

�
1

I1
� 1

I2

�
sin � sin 2 

_� =
L

2

�
1

I1
+
1

I2
�
�
1

I1
� 1

I2

�
cos 2 

�
(13)

_ =

�
L

I3
� _�

�
cos �:

In accordance with the formula (12), the initial values �jt=0 and  jt=0 control
redistribution of the value L among the components L1; L2; L3 at t = 0: In
particular we are interested in the following special cases.

The special cases and the f�(t);  (t)g phase portrait (Fig. 1):

1. Rotation about the axis I1 only (12): L1jt=0 = L while L2jt=0 = L3jt=0 =
0; corresponding to the point �jt=0 = �=2;  jt=0 = �=2 - a stable steady
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point (Fig 1). Here cos � = 0; sin � = 1; cos = 0 not only at t = 0, but
the functions

�(t) � �=2; _�(t) � 0; cos(�) � 0; sin(�) � 1, (14)

 (t) � �=2; _ (t) � 0,
�(t) = linear function (so that _�(t) � const)

represent a stable steady solution of the system. The spin around axis I1
is an e¤ect of _� only. In computers it�s impossible to set (�=2; �=2) as
the initial values exactly (in order to obtain this steady solution exactly).
However, with accurate appoximation of (�=2; �=2), numerical solutions
f�(t);  (t)g evolve along an in�nitely small circular loop looking like a
steady solution even despite the approximate initial values.

2. Rotation about the axis I2 only (12): L2jt=0 = L while L1jt=0 = L3jt=0 =
0 corresponding to an unstable steady point �jt=0 = �=2;  jt=0 = 0 (Fig
1). Here6 not only � = 0; sin � = 1; and sin = 0 at t = 0, but the
functions

�(t) � �=2; _�(t) � 0; cos(�) � 0; sin(�) � 1, (15)

 (t) � 0; _ (t) � 0,
�(t) = linear function (so that _�(t) � const)

represent a solution of the system. The spin around axis I2 is the e¤ect of
_� only. Again, in computers it�s impossible to set (�=2; 0) as the initial
value exactly. However, unlike the Case 1 of in�nitely small closed curves
in the vicinity of the points (�=2; k�+�=2), here the numerical integration
follows either along the in�nite blue trajectories (never reaching � = �=2),
or along the closed red trajectories (never reaching  = k�). Both types
approach the points (�=2; k�); k = 0; 1; ::: in�nitely close - see Fig
1. We will demonstrate that in neighborhoods of these unstable steady
points (�=2; k�) the trajectory f�(t);  (t)g stays during a �nite time.
During this time the body spins almost uniformly as though the exact
solution (15). However, after expiration of this staying time, the trajectory
f�(t);  (t)g quickly jumps along the red or blue arcs toward the next point
(�=2; k�) - Fig. 1, and it is during these jumps that the physical spin of
the body abruptly �ips to the opposite demonstrating the Dzhanibekov
e¤ect.

3. Rotation about the axis I3 only (12): L3jt=0 = L while L1jt=0 = L2jt=0 =
0 corresponding to �jt=0 = 0. Here  jt=0 may be any value (Fig 1).
Observe, that at t = 0 cos � = 1; sin � = 0: And observe that while
�(t) � 0 is a zero solution of the system, the functions � and  vary in

6Like the case 1, except that here  (t) � 0:
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such a way that _ + _� = const: The physical spinning around axis I3 is
uniform despite being a sum of varying functions.

The following picture of trajectories f�(t);  (t)g was obtained using the
phase portrait builder in the Taylor Center software.
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Fig. 1. Phase portraite of f�(t);  (t)g : I1 = 6; I2 = 11; I3 = 15:
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The phase portrait in Fig.1 corresponds to I1; I2; I3 being all di¤erent:
I1 < I2 < I3.
In the case of symmetry when I1 = I2 the system (11) simpli�es taking the

form

_� = 0; � � const

_� =
L

I1
(16)

_ =

�
L

I3
� L

I1

�
cos � = const

As we see, in the case of I1 = I2 the motion is uniform: angular velocities _� and
_ are constant with the constant nutation angle for any initial �jt=0 2 [0; �=2].

Gyroscope.

The equations (16) representing a freely spinning body with an axis of symmetry,
describe a gyroscope (case 3 in the section Physical setting earlier). When a
gyroscope is being started, some rotational moment is applied to the rotor until
it spins with a required velocity around the axis z so that Lz = L; Lx =
Ly = 0; � = 0. During the starting time, the rotor is not a free top so that
ODEs (16) do not apply. After the staring time ended, if the rotor was not
disturbed so that � = 0; it is a properly functioning gyroscope whose axis holds
the initial direction. Otherwise, if the rotor was disturbed during the starting
time so that � 6= 0; after the rotor becomes a free top its axis would perform a
conic precession with � � const 6= 0 so that the gyroscope would not function
properly.

The phase portrait when I1 and I2 are close

Contrary to the Fig 1, the (�;  ) phase portrait in this case shrinks to the
serious of vertical lines containing no unstable steady points. The picture below
shows an approximation when I1 and I2 are close (and steady points are still
present).
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Fig. 2. (�;  ) phase portraite: I1 = 6; I2 = 6:1; I3 = 10:1:
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Remark 7 In all of the simulations considered farther on, even when we refer
to the exact cases 1-3 above, we can use only the computer approximations of the
steady points (as they are expressed via irrational numbers). In other words, in
all the cases of numerical simulation we operate in the "in�nitely small" vicinity
of the steady points excluding them.

Method of visualization

Here we achieve visualization of the moving body using the following simpli-
�ed graphical outline. A rigid body having the principal axes I1; I2; I3 is
represented here as a rectangle with unequal width and height. The _ axis is
perpendicular to the rectangle in its center. The rectangle is outlined with 6
points whose trajectories are entered automatically by the script �le (the page
Graph setting in the Main window of the program)

fx1; y1; z1g
:::

fx6; y6; z6g

Here fxi(t); yi(t); zi(t)g represent trajectories made by these points during the
motion. However, the script �le sets the display of the moving dots only (not
plotting their trajectories).
In a few cases we also add two points on the _ axis of the body.
For the Dzhanibekov e¤ect the body motion is visualized also as a spinning

triangle which periodically �ips its orientation.

Equations in the software

The constants.

Pi = 3.141592653589793238462643
p5 = Pi/5
R = 1
H = 1.2
a2 =4^2
b2 = 2^2
c2 = 1^1
i1 = b2 + c2
i2 = a2 + c2
i3 = a2 + b2
te0 = 0.2
�0 = 0
Psi0 = 0.3

31



i12 = (1/i1 - 1/i2 )
i13 = 1/i3
L = 15

The Initial values

t = 0
te = te0
� = �0
Psi = Psi0

Auxiliary variables

coste = cos(te)
sinte = sin(te)
cos� = cos(�)
sin� = sin(�)
cospsi = cos(psi)
sinpsi = sin(psi)
�1 = ( sinpsi^2/i1 + cospsi^2/i2)*L
cos�coste = cos�*coste
sin�coste = sin�*coste
psiP10 = psi - Pi/10
cospsi0 = cos(psiP10)
sinpsi0 = sin(psiP10)
cospsi1 = cos(psiP10 + p5)
sinpsi1 = sin(psiP10 + p5)
cospsi5 = cos(psiP10 + p5*5)
sinpsi5 = sin(psiP10 + p5*5)
cospsi6 = cos(psiP10 + p5*6)
sinpsi6 = sin(psiP10 + p5*6)
x0 = R*( cos�*cospsi0 - sin�coste* sinpsi0 )
y0 = R*( sin�*cospsi0 + cos�coste* sinpsi0 )
z0 = R* sinpsi0*sinte
x1 = R*( cos�*cospsi1 - sin�coste* sinpsi1 )
y1 = R*( sin�*cospsi1 + cos�coste* sinpsi1 )
z1 = R* sinpsi1*sinte
x5 = R*( cos�*cospsi5 - sin�coste* sinpsi5 )
y5 = R*( sin�*cospsi5 + cos�coste* sinpsi5 )
z5 = R* sinpsi5*sinte
x6 = R*( cos�*cospsi6 - sin�coste* sinpsi6 )
y6 = R*( sin�*cospsi6 + cos�coste* sinpsi6 )
z6 = R* sinpsi6*sinte
x7 = 0.5*(x0 + x6)
y7 = 0.5*(y0 + y6 )
z7 = 0.5*(z0 + z6 )
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x8 = 0.5*(x1 + x5)
y8 = 0.5*(y1 + y5 )
z8 = 0.5*(z1 + z5 )
x10 = -H*sinte*sin�
y10 = H*sinte*cos�
z10 = -H*coste
x11 = 0
y11 = 0
z11 = 0
x12 = -x10
y12 = -y10
z12 = -z10

Here the points of the circumference (i = 0; :::9)0@ xi
yi
zi

1A = A0 �

0@ R cos i
R sin i
0

1A
while the point on the _ axis0@ x10

y10
z10

1A = A0 �

0@ 0
0
�H

1A
(A0 is the rotation matrix (1)).

ODEs

t�=1
te�= i12*L*sinte*sinpsi*cospsi
��= �1
psi�= (L/i3 - �1)*coste

General position cases

To begin with, consider a symmetric free top when I1 = I2 (a2=b2) so that
the equations (11) turns into (16) (� = 0:1 (radian),  = 0). Load the script
SymPi10.scr and click the Play button. Observe a uniform motion when I3-
axis outlines a right circular cone. Here the program plots a trajectory of the
end point of I3 axis of the rotation _ . Unlike asymmetric cases later, here the
motion is uniform at any initial tilt �jt=0 2 [0; �=2].
Now consider an asymmetric case in some general position (� = 1 (radian),

 = 0) loading script �le genTe1Psi0.scr and clicking the Play button. Here
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too the program plots a trajectory of the end point of I3 axis. Watch that tilt
� varies along with �:
Then load PlaneTe1Psi0t.scr for the same settings. It demonstrates that

not only � varies, but that also spinning around I3-axis is not uniform having
varying velocity. That�s a typical situation for an asymmetric free top motion,
when the spinning velocity around I3-axis generally is not constant interacting
with varying � and �:

Rotation around I1 only

Here we are to see a simulation of the Case 1: L1 = L (L2 = L3 = 0; � =
�=2;  = �=2 at t = 0) according to (12). The points (� = �=2;  = �=2+k�),
k = 0; �1; �2; :::, are stable steady point - see the phase portrait Fig 1.
Load script �le L1only.scr and click the Play button. Watch the rotation

around the axis I1 of the smallest momentum (along the long axis of the rectan-
gle). This rotation looks uniform - and is in fact uniform with the exact solution
�(t) � �=2;  (t) � �=2; and the rotation velocity expressed via _� = const only.

Rotation around I3 only

Here we are to see a simulation of the Case 3: L3 = L (L1 = L2 = 0; � = 0
at t = 0) according to (12) - see Fig 1.
Load script �le L3only.scr and click the Play button. Watch the rotation

around the axis I3 of the biggest momentum (rotation around the axis per-
pendicular to the rectangle). Observe that spinning around I3 is slower than
around I1. The duration of both segments (in unitless time) is about 1 played
the same 10 seconds in both cases.
This rotation also looks uniform - and it is, however this fact must be estab-

lished, because though �(t) � 0; neither of the velocities _ or _� are constant.
Considering that

_ =

�
L

I3
� _�

�
cos �

and cos � � 1; and according to the formulas (18) in [2]
!1 = _� sin � sin + _� cos 

!2 = _� sin � cos � _� sin 
!3 = _� cos � + _ :

we see that !3 = _� cos � + _ =
L

I3
= const, though _ and _� are not con-

stant! Load script �le L3onlyFi1Psi1Te1.scr and watch the violent oscillation
of _� (compensated with just as violent oscillation of the _ so that �; !3 and
L3 remain constant). We clearly see here that the Euler�s angular velocities _ 
and _� have little to do with the actual spin !3 of the body.
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Rotation around I2 only: the Dzhanibekov e¤ect

Sub-folder L2.

As we saw above in the initial descriptions of the three cases, also in this
case 2 there exists an exact solution (15) of the uniform rotation similar to the
solution (14) in the Case 1. It�s easy to write down a special trivial system
of ODEs (having nothing to do with the system (11)) satis�ed by this special
solution (15), which shows that the rotation of the body takes place due to the
linear nonzero function �(t) only, � and  being constants.
The di¤erence with the Case 1 however is in that neither in physical world,

nor in numerical integration the exact solution of the original system (11) for
the initial points (� = �=2;  = k�) is achievable because we always deal with
solutions for some approximations of those steady points (� = �=2;  = k�).
It will be demonstrated (Theorem 2 below) that in the vicinity of the steady
points the rotation of the body also takes place due to the "almost" linear
nonzero function �(t) only, while � and  are almost constants, whose constancy
is periodically violated by surges - the �ipping of the Dzhanibekov e¤ect.
At the beginning, just like in the cases of the axes I1 and I3, rotation around

I2 also looks as though uniform, however it does not remain uniform in�nitely
long. After certain period of uniformity, the body quickly �ips its orientation
for the opposite in respect to I2; continuing the �ipped uniform rotation around
it, then it �ips again, and so on.
The theoretical instability of rotation around the middle axis I2 was known

already for long since 1851 thanks to Poinsot [8]. Later this e¤ect was observed
during rotation of some objects also in reality, particularly for a tennis rocket,
studied by Mark Ashbaugh [7] in 1991. However, it required weightlessness
in order to watch the lasting spin of a free rigid body with three di¤erent
principle axes demonstrating this e¤ect, and so it happened to be the astronaut
Dzhanibekov (1985) who �rst noticed this remarkable behavior of a spinning
wingnut depicted in the video [6].
Watch this video of real physical objects displaying the Dzhanibekov e¤ect,

and then load the script �les demonstrating mathematical simulation of this
e¤ect: �rst - the �le L2only.scr (a spinning frame with a handle), and then
L2onlyAsTriang.scr (a spinning triangle). Both objects in these simulations
spin and �ip like the real things in the video, which is remarkable in itself.
In all the simulations below (except one) we use the same distinct moments

of inertia I1 = 6; I2 = 11; I3 = 15. The exceptional one with near symmetrical
moments I1 = 6; I2 = 6:1; I3 = 10:1 is L2onlyAlmSym.scr .Load and play it
observing that in it the Dzhanibekov �ip also takes place, but much later.

In the vicinity rather than exactly at the steady points.

The point (� = �=2;  = 0) de�ning the Case 2 is an unstable steady point
among in�nitely many such unstable steady points (� = �=2;  = k�); k =
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0; 1; ::: along the central vertical line in the phase portrait Fig 1. We are to
demonstrate that it is this set of these points of instability which is responsible
for the remarkable behavior in the Dzhanibekov e¤ect. At that, no numerical
solution can reproduce the exact in�nitely steady solution (14). No trajectory
f�(t);  (t)g reaches the points (�=2; k�), though closely approaching them.
During such approaches, � is close to �=2, and according to the ODEs (11),
_�(t) and cos �(t) remain close to 0. It is then that we see the lasting uniform
rotation of the body in �xed orientation after which it �ips.

A closer look.

After watching in stereo a quite realistic simulation of the �ipping, let�s take
a closer look at the details of this �ipping. The most direct indicator of the
�ipping is the moments L1(t); L2(t); L3(t) (12) showed at the Fig 3. This
picture displays various versions of the curves L1(t); L2(t); L3(t) for di¤erent
initial values approximating the exact steady point (� = �=2;  = 0). The
curve named "exact" represents the best machine approximation of � up to 19
decimal digits.
All the curves have a plateau whose width depends on the closeness of the

initial point to the exact (� = �=2;  = 0). We see that all three moments
have their plateau simultaneously, L1 = L3 = 0; L2 = �const 6= 0 (in red).
It�s during the time segments corresponding to those plateau when the body
spins near uniformly. Then, in a short time of �ipping, L2 (in red) �ips to the
opposite values, while L1 and L3 after a short surge return to their zero state.

Remark 8 Observe that only in the "exact" case of the initial values the surges
of L1 and L3 are irregular, while in the approximate cases they are regular.
Observe also that only in the "exact" case the �rst plateau is signi�cantly wider
than the other plateaus in the same curve. These e¤ects take place only for the
"exact" initial values, which will be explained later.

In order to understand better the origins of those plateaus in all Li(t), it is
instructive to watch the behavior of  (t); �(t) in comparison with sin �(t) and
cos (t) - as the formulas (12) for the Li suggest.
We are to experiment now with the case when the initial values  = 0:1; � =

�=2: slightly higher than the steady point so that the trajectory f�(t);  (t)g is
a closed curve in the red zone in the Phase portrait Fig. 1.
Load the script �le TePsiSinteCosPsiPsi01.scr corresponding to this case.

You will see 4 curves: �(t) in black,  (t) in red, sin �(t) in blue, and cos (t).
Observe that �(t) and  (t) are smoother than sin �(t) and cos (t). The sin �(t)
and cos (t) display sharper and wider plateaus, and the width of the plateaus
determines the steady time or duration of the uniform spin.
Now load the script �le Psi(te)Psi01.scr corresponding to the same case,

but showing the trajectory f�(t);  (t)g. Play it and watch how the bullet slows
down at the bottom and the top of the curve where the curve approaches the
steady point (� = �=2;  = k�). This slowing down turns into a signi�cant
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pause in the next case where the distance to the exact steady point is very small
- load and play �le Psi(te)Psi0000001.scr.

Now let�s explore the same e¤ects for the blue trajectories f�(t);  (t)g in
Fig. 1 for which initial values  = 0 exactly, but � slightly deviates from �=2:
Load the script TePsiSinteCosPsiTe15.scr where � = 1:5:
Again you will see 4 curves: �(t) in black,  (t) in blue, sin �(t) in magenta,

and cos (t) in green. However, unlike in the previous case,  (t) now is a stair
like curve as it should being in the blue zone of the Phase portrait Fig 1. Here
too, �(t) and  (t) display smoother plateaus than those in sin �(t) and cos (t):
Now load and play Psi(te)Te15.scr. Unlike in the previous case, this blue-

type f�(t);  (t)g trajectory leads from one to the next of the steady points
(� = �=2;  = k�) and so on, resting in the vicinity of each of them. This rest
time becomes longer in the next sample when initial value � = �=2� 0:00001 :
load and play Psi(te)Te00001.scr .

Now let�s try the initial value with just one zero more after the decimal
point so that � = �=2� 0:000001 - load Psi(te)Te000001.scr . To our surprise,
what we expected to be the blue-type trajectory going up and down in�nitely,
now turned into the already familiar coconut-type closed curve in the red zone
(Fig. 1). And if you play it, it pauses at the top and bottom just like the red
trajectories do - despite that the initial value (� = �=2 � 0:000001;  = 0)
corresponds to the blue type trajectories.

We have just seen the e¤ect of the well known [8] instability of the ODEs
(11) surfaced in this integration process at the given (default) accuracy settings,
at which the integration along the blue-type trajectory from the point (� =
�=2 � 0:000001;  = 0) slipped into the red zone near the next steady point
(� = �=2;  = ��) - as the red and blue zones are in�nitely close to each other
- Fig. 1.
Now let�s load the sample Psi(te)Te000001blue.scr with the same initial val-

ues (� = �=2� 0:000001;  = 0) but more stringent integration step parameter
k = 0:1 (instead of the default k = 0:5). With this higher accuracy of inte-
gration we see that trajectory f�(t);  (t)g got back into the blue zone, as it
should.

Conclusion 1 When close enough to the steady points (� = �=2;  = k�), the
integration process of the system (11) is so sensitive, that slipping from the red to
blue zone trajectories and vice versa (Fig. 1) may take place. The slipping hap-
pens even despite the fact that the Taylor integration method potentially promises
the highest accuracy up to all digits of the mantissa in the �oat point numbers
(63 binary digits in the PC type "extended" used in this software). However, this
goal may not be always achieved because of the so called catastrophic subtraction
(or cancellation) error emerging in some unstable problems like this one. It�s
a catastrophic loss of signi�cant digits because of a cancellation in a di¤erence
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of two close non-zero numbers in a �xed length �oat point representation. For
example, an attempt to compute a derivative of a di¤erentiable function f 0(x)
via a �nite di¤erence

f 0(x) � f(x+ �)� f(x)
�

; � = 2�n

for a small enough � in a �xed �oat point format will yield zero rather than
the derivative. In Automatic Di¤erentiation we do not deal with such �nite
di¤erences thanks to availability of the formulas for n-order di¤erentiation for
elementary functions. However a catastrophic cancellation may emerge in the
right hand sides of ODEs and while computing their derivatives by the formulas
of AD.

At the steady points "exactly"

"Exactly" in computers means with the best possible accuracy: for the PC
it�s 19 accurate decimal digits of � (or 63 binary digits). In this section we
are to consider simulations with the initial values (� = �=2;  = k�) at the
steady points speci�ed with such accuracy. In the PC any approximation of �=2
di¤ers7 from �=2 so that even with the exact  = 0 these initial values in exact
mathematical terms surely correspond to the blue zone trajectories. However in
numerical implementation, as we saw in the examples above, even a di¤erence
10�7 from the exact �=2 su¢ ces to cause slipping of the trajectory from the
blue into the red zone. Therefore...

1. With the di¤erence as small as about 10�18 from the exact value �=2 in the
initial values, a random drift (though negligibly small) of the trajectory
f�(t);  (t)g between the red and blue zones takes place in a small vicinity
of the steady points - until the trajectory �nally gets away from the steady
point far enough to further follow one of the 8 possible routes: 4 in the
blue zone, or 4 in the red zone - Fig 1.

2. As we have discussed earlier, while in a vicinity of the steady points (� =
�=2;  = k�); the trajectory f�(t);  (t)g (when played) slows down and
rests for a certain time: the closer to the steady point - the longer. Take
a look at the Fig. 3 displaying all momenta Li(t); i = 1; 2; 3: L2(t)
in red. The item 1 in Fig. 3 corresponds to the "exact", i.e. 19 digits
accurate decimal approximation of the initial values - the closest possible.
In it we see the �rst plateau being the largest corresponding to the longest
staying time. This longest staying episode ends when the integration takes
one of the possible 8 ways reaching a vicinity of the next steady point

7Even if we did not need � in our numerical model, in the �oat point format most of
rational numbers also cannot be represented exactly, and rounding errors are inevitable. Exact
integration of a solution corresponding to a particular initial value (in the �oat point format)
is a rare exception.

38



(� = �=2;  = k�) - though never approaching it with the accuracy as
high as the initial accuracy 10�18 at the �rst plateau. That is why all the
subsequent plateaus are shorter.

Navigate into the subfolder FreeTopnL2nUnpredictable. It contains several
versions of the same problem with the "exact" initial values (� = �=2;  = 0)
integrated with di¤erent values of the integration step ratio (speci�ed on the
Integration setting page of the Main window). Let�s begin with the simulation
for the ratio 0:5 (appearing in the �le names as 05).

Load script k05Te(t)Psi(t).scr displaying the functions �(t) and  (t). Recall
that both functions theoretically must be constants like the steady solution (14):
� � �=2;  � 0. However  (t) behaves like a stair with steps randomly drifting
up or down. As it was mentioned in the beginning, it is the function �(t) only
which is responsible for rotation of the body.
Load script k05TePsiFi(t).scr displaying the same graphs �(t);  (t) adding

�(t). You see that �(t) near linearly grows no matter how  (t) drifts and which
direction �(t) surges.
Load script k05Psi(Te).scr displaying the trajectory f�(t);  (t)g and then

Play it keeping the Phase portrait Fig. 1 at hand. First the bullet pauses at
(� = �=2;  = 0). Then it jumps to (�=2; �) and pauses there. Then it jumps
to (�=2; 2�), pauses, and jumps back to (�=2; �) in accordance with the graph
k05Te(t)Psi(t).scr. As this graph suggest, judging by the oscillation of  (t),
the last loops are along the red type trajectories. The following simulations are
with the integration ratio 0:05.

k005Te(t)Psi(t).scr shows randomly drifting steps of a stair again (though
in a di¤erent way), while...
k005Te(t)Psi(t)Fi(t).scr adds �(t) which evolves near linearly disregarding

the randomness of �(t) and  (t).
k005Psi(te).scr displays the trajectory f�(t);  (t)g which you must Play

and also compare with the Phase portrait Fig. 1

Conclusion 2 Because of instability at the unstable steady points (� = �=2;  =
k�), the behavior of the curve f�(t);  (t)g in small vicinity of these points is
unpredictable. At every such point there are as many as 8 possible ways how the
curve f�(t);  (t)g may further evolve (Fig. 1). Yet despite these 8 unpredictable
routes for the trajectory f�(t);  (t)g, the following Theorem takes place.

Theorem 2 In the close vicinities of the unstable steady points (� = �=2;  =
k�) the motion is steady for any of the curves f�(t);  (t)g so that the body
spins uniformly at these points, until it jumps away along one of 8 possible
ways. Whichever of the 8 ways the curve f�(t);  (t)g takes, when reaching any
of the 2 neighboring unstable steady points (� = �=2;  = k�), the rotation
momentum L2 switches its sign to the opposite making the �ip.
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Proof. As it follows from the ODEs (11), in the vicinity of points � = �=2;  =
k� the values _� and _ are near zero meaning the evolution of the curve f�(t);  (t)g
pauses and the body uniformly spins with the velocity _� until it "jumps". Re-
calling that L2 = L sin � cos , the function cos changes the sign from +1 to
�1 and vice versa at the points  = k�, while sin�=2 remains 1, which proves
the Theorem.
This Theorem provides an explanation why the graph L2(t) (red) switches

the sign from +1 to �1 and vice versa regularly, while L1(t), L3(t), as well
as �(t); _ (t); and _�(t) may switch the signs irregularly during the �ips. This
regular �ipping of L2(t) is easily observable both in the video of the physical
experiment of Dzhanibekov, and in numerical simulations in 3D in this soft-
ware. It�s more challenging to notice the irregular surges of �(t); _ (t) in 3D
simulations, but the 2D graphs display surges of �(t); _ (t); and _�(t) with the
best clarity.
The samples Psi(te)Psi01.scr, Psi(te)Psi0000001.scr, Psi(te)Te15.scr in sub-

section "Closer look" well demonstrate the pausing in the vicinities of the points
(� = �=2;  = k�).
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Fig. 3. Momenta Li for various initial values in the vicinity of steady points.
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Final notes on the Dzhanibekov e¤ect

The Dzhanibekov e¤ect is a consequence of the remarkable behavior of the
solutions of the system (11) in the vicinity of all unstable steady points (� =
�=2;  = k�). As a result of the instability, instead of escaping into a chaotic
behavior, the trajectories f�(t);  (t)g approaches the next point (� = �=2;  =
k�) by one of 8 possible escape routes, pausing at every such point while the
body performs approximately uniform rotation.

� In the physical world, a wingnut easily spinning on a �xed bolt in weight-
lessness, presents near ideal mechanical arrangement. When an astronaut
strongly spins the wingnut so that it moves toward the end of the bolt,
the nut leaves the bolt uniformly moving and spinning around its middle
axis I2 with high enough accuracy. However, in the real world there are
some physical disturbances such as turbulence in air, or small mechanical
inaccuracies. Therefore, the wingnut rotation corresponds to the behav-
ior of the mathematical model in the close vicinity of the steady points
(� = �=2;  = k�) (rather than the special solution (15)).

� In numerical simulations the exact initial values for the special solution
(15) cannot be even speci�ed. Moreover, because of the instability of the
system (11) near the unstable steady points, integration of the ODEs in
the vicinity of those points even with the Taylor method adds inaccuracies
acting similar to the disturbances in the physical world. That is why we
can observe the Dzhanibekov e¤ect both in physical world and in these
numeric simulations.

Heavy Top
Folder: HeavyTop.

Here we refer to the theory of the heavy top motion as it is presented in the
article "The spinning top" by Chloe Elliott [9]. The ODEs (3.73)-(3.75) for a
heavy top in the original form in [9] are

_u2 = f(u) (17)

_� =
b� au
1� u2

_ =
I1a

I3
� ub� au

1� u2 ;

where

u = cos �

f(u) = (1� u2)(�� �u)� (b� au)2 (18)
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and the meaning of the constants are

a =
I3!3
I1

; b =
p�
I1
= _� sin2 � + a cos � (19)

Veff =
I1 (b� a cos �)2

2 sin2 �
+Mgl cos �

E0 =
1

2
I1 _�

2
+ Veff

� =
2E0

I1
; � =

2Mgl

I1
;

An alternative form for (17) is in � directly:

_� =

r
�� � cos � � (b� a cos �)

2

sin2 �
:

In both cases above, the _u and _� are expressed via a square roots of the right
hand sides creating a di¢ culty for the Taylor integration when the under-root
expression approaches zero (a singularity point). Therefore we rewrite these
equations into a second order ridding of the square root:

�u =
3

2
�u2 � (�+ a2)u� �

2
+ ab (20)

_� =
b� au
1� u2

_ =
I1a

I3
� u _�

or

�� =
�

2
sin � +

(a cos � � b)(a� b cos �)
sin3 �

(21)

_� =
b� a cos �
sin2 �

_ =
aI1
I3
� _� cos �

both used for integration.
Similarly to the case of a "rolling disk" without rolling (considered earlier

in a subsection "The meaning of _�"), the motion of a heavy top also relates
to mathematical pendulums: here is how. Recall the ODE for a 2D plane
pendulum

�� = � sin �
and the ODEs for a 3D pendulum

�� = � sin � + _�
2
sin � cos � (22)

�� = �2_� _� cos �= sin �:
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Compare them with the ODE (21) (remembering that the meanings of � in (21)
and in the ODEs for the pendulums di¤er in �). When the top has no spin
and no precession, it oscillates like a pendulum on a swivel suspension - just as
the "rolling disk" without rolling! - "not noticing" presence of the horizontal
surface.

Equations in the software

(Script �le general.scr)

The notation is

Veff Ve¤
E0 E1
� alf
� bet
aI1
I3

ai1di3

Constants

Pi = 3.141592653589793238462643
p5 = Pi/5
R = 1
Mg = 10
i1 = 5
i3 = 1
h = 2 {distance to the center of mass (l in equations)}
w3 = 20
te0 = 0.01
te10 = 0.1
coste0 = cos(te0)
sin2te0 =sin(te0)^2
�10 = 0.1
a = i3*w3/i1
b = �10*sin2te0 + a*coste0
ai1di3 = a*i1/i3
Ve¤ = 0.5*i1*(b - a*coste0)^2/sin2te0 + Mg*h*coste0
E1 = 0.5*i1*te10^2 + Ve¤
alf = 2*E1/i1
bet = 2*Mg*h/i1

Auxiliary variables
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cos� = cos(�)
sin� = sin(�)
cospsi = cos(psi)
sinpsi = sin(psi)
coste = cos(te)
sinte = sin(te)
sin2te = sinte^2
sin3te = sinte*sin2te
�1 = (b - a*coste)/sin2te
xc = h*sinte*sin�
yc = - h*sinte*cos�
zc = h*coste
sin�coste = sin�*coste
cos�coste =cos�*coste
cospsi2 = cos(psi + p5*2)
sinpsi2 = sin(psi + p5*2)
. . . . .
cospsi8 = cos(psi + p5*8)
sinpsi8 = sin(psi + p5*8)
x0 = xc + R*( cos�*cospsi - sin�coste*sinpsi )
y0 = yc + R*( sin�*cospsi + cos�coste*sinpsi )
z0 = zc + R* sinpsi*sinte
. . . . .
x8 = xc + R*( cos�*cospsi8 - sin�coste*sinpsi8 )
y8 = yc + R*( sin�*cospsi8 + cos�coste*sinpsi8 )
z8 = zc + R* sinpsi8*sinte
x10 = xc
y10 = yc
z10 = zc
x11 = 0
y11 = 0
z11 = 0 {Pivot}
x12 = 2*xc
y12 = 2*yc
z12 = 2*zc

ODEs

t�= 1
te�= te1
te1�= 0.5*bet*sinte + (a*coste - b)*(a - b*coste)/sin3te
��= �1
psi�= ai1di3 - coste*�1
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Heavy top as a pendulum with spin

First play with a couple of a general setting of the initial values.
Load and play script �les w18.scr and general.scr.
In this subsection we are going to demonstrate that the heavy top behaves

approximately as a mathematical pendulum whose plane of oscillation declines
from the vertical because the e¤ect of spinning.

Pure pendulum.

Observe that if we set spin !3 = 0; then a = 0:With that in mind and recalling
formulas (19), the ODEs (21) for heavy top simplify

��ja=0 =
�

2
sin � +

b2 cos �

sin3 �
=
�

2
sin � + _�

2
cos � sin �;

��ja=0 =

�
b� a cos �
sin2 �

�0
a=0

= �2_� _� cos �= sin �:

In the case when _� � 0 the �rst ODE here is similar to that for the 2D pendulum.
Otherwise these system are similar to the ODEs (22) for 3D pendulum. Let us
see this in action.
First - a top behaving like a 2D pendulum.
Load the script �le TopLikePendulum.scr in which !3 = 0; � = 0:1 (rad)8

and _� = 0. Play it and observe that the body oscillates as a conventional
mathematical pendulum. Load the scripts TopLikePendulum0001.scr where
� = 0:0001 so that the gap in the circumference is not even visible.
For a comparison, load from the subfolder 2D3Dpendulums the script �le

Pendulum2D.scr of the real mathematical pendulum.
There you may change the initial values in the Constants from _� = 0 to

say _� = 1 (meaning a some push to the pendulum). As a result, the pendulum
would rotate in the vertical plane (rather than oscillate), and so would also the
heavy top!
Let�s play with the 3D simulations. First load from the folder HeavyTop the

script �le PendulumApple.scr where we set _� = 0:5, which initiates precession
outlining an apple during the pendulum-like oscillation. That was for the heavy
top. Now try the script �le PendulumApple.scr with the same name from the
subfolder 2D3Dpendulums, which displays the same apple-shaped outline made
by the mathematical pendulum.

Remark 9 The heavy top moves exactly like a mathematical pendulum only
when !3 = 0 (no spin). Then, just as a mathematical pendulum depending

8We cannot start with � = 0 in ODEs for �� because of singularity in those ODE for � = 0
(and � = �). The ODEs in u (for � = 0; �) have singularity at u = �1. In addition, the
formula for Veff (used in both versions of the ODEs) still contains the singularity at � = 0:
See the section "Sleeping top" for more details.
In ODEs for �� however we can sometimes bypass the point � = � which may be achieved

only if !3 = 0 (no spin).
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on the initial values of � and _�, the top may perform 2� rotation (rather than
oscillation) passing through the lowest point � = �:

Remark 10 Of the two systems (20) in �u and (21) in ��, only the system in
� proper simulates variation of � within [0; 2�] due to integration of �. On the
contrary, the �u system (20) hides � integrating u = cos � instead, and attempts to
retrieve � via arccos cannot return � 2 [0; 2�]. We see a strange e¤ect running
the script u2w0HalfArc.scr. In it !3 = 0 and the pendulum-like motion must
pass through � = � towards 2�, but bounces back instead. Moreover, at � = � (or
u2 = 1) computer integration of both systems may halt with an exception because
of division by sin � in the system (21) or because of singularity in

p
1� u2 in the

system (20). The integration, however, may sometimes quietly pass over such
points when the �nite step is big enough.

Let�s play with a few more heavy tops behaving like a pendulum.
Try u2w001.scr in which (unlike in u2HalfArc.scr), !3 = 0:001. Yet even

this negligibly small spin de�ects the plane of oscillation from the vertical -
therefore avoiding the point u = �1 (� = �).

E¤ect of the spin.

The spinning heavy top however behaves di¤erently. When it falls down un-
der the force of gravity from the upper position, the vector of the reaction
- the hyroscopic force - is perpendicular to the trajectory of the fall having
nonzero components directed horizontally and vertically. The horizontal com-
ponent pushes the spinning top into a precession, while the vertical component,
pushing the top upward, overcomes the gravity at the lowest positions of the
heavy top. Let us introduce some spin and watch how the growing values of the
spin a¤ect the pendulum-like behavior of the heavy top.
We are going to try one by one the �les Pendulumw1.scr, then

Pendulumw5.scr, Pendulumw10.scr and Pendulumw20.scr where only the case
for w1 (!3 = 1) looks like a pendulum outlining an apple with a gap below.
Observe how this gap widens with growing !3 = 5; 10; 20, and the motion
does not resemble pendulum outlining an apple any more (the velocities are
incompatible in these simulations).
Begin with smallest spin !3 = 1 loading and playing the script �le

Pendulumw1.scr. The axis point still outlines an apple shape, however now
we see an "opening" in the bottom never reached by the axis. The oscillation
takes place in (so far) a large strip constrained by two circumferences.
Now try the spin !3 = 10 loading and playing the script �le

Pendulumw10.scr. This time the oscillation takes place in a narrow strip con-
strained by two circumferences: the bigger is the spin, the bigger is the vertical
component of the gyroscopic reaction acting against the gravity.
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The three cases

Subfolder 3Cases.
Here we are to demonstrate (following the reports by Chloe Elliott [9]) that

the motion of the heavy top is really contained within a particular strip � 2
[�min; �max]. There are three types of the motion displayed via the trajectories
of the tip of the rotation axis (Fig. 4):

Fig. 4 Three types of motion (Fig. 44 in [9])

Actual width of the strip [�min; �max] may di¤er, and the wave length of the
curve may be any, even several times longer than 2�).
The analysis of the cases is based on the properties of the polynomial f(u)

(18): in particular on its roots u1; u2; where

�1 < u1 � u2 < 1;

�min = arccosu1; �max = arccosu2:

Load the script �le fu.scr displaying a graph for a sample of a cubic polyno-
mial (in black) crossing the orange abscissa at the root points u1; u2.

Case 1 _� > 0 at both points u1; u2. Load script �le Case11.scr where the red
curve represents the arc of f(u) � 0 crossing the abscissa at the points u1; u2,
while the black curve {u, �101} is _�(u) > 0. Now load and play the script �le
Case1.scr representing the actual motion corresponding to the Case 1.

Case 2 _�(u1) > 0, while _�(u2) < 0. Load script �le Case21.scr where the red
curve represents the arc of f(u) � 0 crossing the abscissa at the points u1; u2,
while the black curve {u, �101} is _�(u) as it should be in this case. Now load
and play the script �le Case2.scr representing the actual motion corresponding
to the Case 2.
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Case 3 _�(u1) > 0, while _�(u2) = 0. Load script �le Case31.scr where the red
curve represents the arc of f(u) � 0 crossing the abscissa at the points u1; u2,
while the black curve {u, �101} is _�(u) as it should be in this case. Now load
and play the script �le Case3.scr representing the actual motion corresponding
to the Case 3.

Uniform motion

The uniform motion of the heavy top is such when � = const (so that also
u = cos(�) = const), _� = const; and _ = const. As it follows from the ODEs
(21), if we obtain the solution � = const, _� and _ are constants automatically.
Our goal here is to demonstrate, that for any given tilt � of the top and for
any big enough spin !3 it is possible to obtain the initial values of _� (and _ )
e¤ectuating the uniform motion.
In the system (21) the ODE for _� does not help to obtain the required

constant values of _� , but we are going to use the ODE (18) for u for that
purpose. Though (18) does not visibly contain _�, _� is present in ODE (18)
implicitly via the constant relations (19).

b =
p�
I1
= _� sin2 � + a cos � = _�(1� u2) + au

b� au = _�(1� u2):

With that in mind, let�s deal with the ODE (18) with the goal to �nally extract
of it the condition for _�.
In order to achieve the uniform motion, we need that �min = �max which

takes place when the roots u1 = u2 in f(u) = 0. The condition for u1 to be a
double root is that f(u1) = f 0(u1) = 0:

f(u) = (1� u2)(�� �u)� (b� au)2 = 0
f 0(u) = �2u(�� �u)� �(1� u2) + 2a(b� au) = 0:

From the �rst one it follows that

(1� u2)(�� �u) = (b� au)2 = _�
2
(1� u2)2

�� �u = _�
2
(1� u2):

Now transform the second one:

�2u(�� �u)� �(1� u2) + 2a(b� au)

= �2u _�2(1� u2)� �(1� u2) + 2a _�(1� u2) = 0:

After ridding of (1� u2); we get a square equation for _�

u _�
2 � a _�+ �

2
= 0
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whose solutions are

_�1;2 =
a�

p
a2 � 2�u
2u

: (23)

These solution are real (physical) if

a2 � 2�u =
�
I3!3
I1

�2
� 4Mglu

I1
� 0

so that
!3 �

2

I3

p
MglI1 cos � = !thresh(�) (24)

presenting the condition how big !3 must be for the given tilt � in order that the
uniform motion take place with the two possible values _�1;2 of the precession
of the top. Both solutions _�1;2 are of the same sign. They are known as the
"slow" and "fast" precessions.
If !3 � !thresh(�) and !3 t !thresh(�) so that a2 � 2�u t 0; then both

_�1;2 are approximately the same and

_�1;2 t
a

2u
=
I3!3
2uI1

=
I3
2uI1

2

I3

p
MglI1 cos � =

r
Mgl

I1 cos �
(25)

Remark 11 For a given �, if !3 < !thresh(�), the uniform motion is impossible
for such !3 turning into one of the three non-uniform cases presented above.

Remark 12 For a given �, if !3 > !thresh(�), for such !3 there do exist two
_�1;2 e¤ectuating the slow and fast uniform motions.

Remark 13 In both slow and fast uniform motion the axis moves along the
direct circular cone so that the center of mass follows a circumference with the
same radius r. For the bigger of the two _�1;2 the centrifugal force _�

2
r is bigger.

In particular, if _�2 > _�1 then

Centrifugalj _�2 > Centrifugalj _�1 ;

its z-projections for the same cone

Centrifugalzj _�2 > Centrifugalzj _�1
acting down and adding to the gravity, so that the following balance of forces
must take place:

(Gyroscopicz�Centrifugalz�Gravity)j _�1 = (Gyroscopicz�Centrifugalz�Gravity)j _�2 = 0

or

(Gyroscopicz � Centrifugalz)j _�1 = (Gyroscopicz � Centrifugalz)j _�2
- compare with the formulas (9), (10) for the rolling disk.
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Here are the formulas in the section Constants implementing these cases of
uniform motion.

Pi = 3.141592653589793238462643
p5 = Pi/5
R = 1
Mg = 10
i1 = 5
i3 = 1
h = 2
w3 = 25
te0 = 0.3
te10 = 0
coste0 = cos(te0)
sin2te0 =sin(te0)^2
a = i3*w3/i1
u0 = coste0
bet = 2*Mg*h/i1
determ = a^2 - 2*bet*u0 {must be >0}
�10 = 0.5*(a + sqrt(determ))/u0
b = �10*sin2te0 + a*coste0
ai1iz = a*i1/i3
Ve¤ = 0.5*i1*(b - a*coste0)^2/sin2te0 + Mg*h*coste0
E1 = 0.5*i1*te10^2 + Ve¤
alf = 2*E1/i1

Simulations of the uniform motion.

Subfolder HeavyTopnUniform.
First explore the function f(u) by loading the script �le w5fu.scr and ob-

serving that the the curve touches the abscissa (as it should in this case).
There are two versions of the simulations for the two values � = 0:3; 1

(radians): for each of them the fast precession version with "Plus" in the name
corresponds to "+" in (23) and the slow version with "Minus" in the name
corresponds to "-" in (23).
Load and play script �les mentioned in the table below.
With all other constants as they are...
Script �le � min!3 !3 _�

w20Minus03rad.scr 0:3 19:54 20 1:65
w20Plus03rad.scr 0:3 19:54 20 2:53
w15Minus1rad.scr 1 14:7 15 2:22
w15Plus1rad.scr 1 14:7 15 2:22
w25Minus1rad.scr 1 14:7 25 0:88
w25Plus1rad.scr 1 14:7 25 8:37
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Discussion.

Here too it�s instructive to analyze the cases of the uniform motion presented
above qualitatively.
The center of the mass of the top moves along a circumference generating a

centrifugal force whose component tends to overturn the top together with the
gravity (unlike in the case of rolling disk). Here the only reaction acting upward
counteracting the fall of the top is the gyroscopic reaction.

The sleeping top

Subfolder HevyTopnSleeping
The term sleeping top is used for the heavy top whose axis is exactly vertical

so that the top spins without nutation i.e. � = _� = 0, u = 1; b = a =
I3!3
I1

; � = � =
2Mgl

I1
; � is not de�ned, _ = !3 = const.

Physically this case would not need a special consideration being merely a
special case among those covered in the sections "Heavy top as a pendulum with
spin" and "Three cases" when �min t �max t 0. Mathematically, however, we
confront a problem that both systems of ODEs presented here for modelling the
heavy top (17), (21) in general position are singular at � = _� = 0. We do not
know if the systems of ODEs in u; �;  or in �; �;  modelling the general
heavy top and regular for � = _� = 0 even exist. The regular ODE (20) for u
alone does exist and can be integrated as a stand alone ODE - but not together
with the system (20).
In order to integrate a system speci�cally modelling the sleeping top, we must

modify (regularize) the system (20) deliberately setting _� � 0 and computing
the lim

�!0
Veff

Veff =
I1 (b� a cos �)2

2 sin2 �
+Mgl cos � =

I1a (1� cos �)2

2 sin2 �
+Mgl cos � =

=
I1a (1� u)2

2(1� u2) +Mglu =
I1a (1� u)
2(1 + u)

+Mglu;

lim
�!0

Veff = lim
u!1

Veff =Mgl (valid only for �jt=0 = 0):

Moreover, for these speci�c initial values the the special solution may be ex-
pressed explicitly:

u � 1 (26)

� � 0

� � 0
_ = !3:
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Remark 14 Though the special solution (26) does simulate the heavy top in
the sleeping mode, it has little to do with its physical behavior and stability in
this mode. In order to numerically explore and experiment with its stability,
we must consider the general ODEs (21) simulating the heavy top with initial
values � t 0 (yet taking care that � 6= 0).

Remark 15 It�s worth noting the distinction between this special solution (26)
and the special solution for the Dzhanibekov e¤ect. The solution corresponding
to the Dzhanibekov e¤ect is a regular solution of the respective system (11) for
the free top, though unstable, while the sleeping top solution (26) makes the
systems (20), (21) singular.

The script �le ValidOnlyForte0.scr demonstrates this special case.

In order to explore the stability of the sleeping top depending on its spin !3,
lets follow the approach by Chloe Elliott in [9].
He considers a modi�ed ODE _u2 = f(u) (18) under the special conditions

a = b and � = � (taking place for the sleeping top) so that in a new variable v
it is

_v2 = f(v) = (1� v)2(�(1 + v)� a2): (27)

The general solutions v(t; t0) = u(t; t0) only for the initial value vjt=0 =
ujt=0 = 0: otherwise, v(t) is merely some approximation of u(t). Observe that
f(v) = (1� v)2(�(1 + v)� a2) has a double root v1 = 1 and another root from

the condition �(1 + v)� a2 = 0 or v2 =
a2

�
� 1 =

�
I3!3
I1

�2��
2Mgl

I1

�
� 1 =

I23!
2
3

2I1Mgl
� 1:

At the point of double root v1 = 1 the cubic curve f(v) may touch the
abscissa in two di¤erent ways:

1. f(v) reaches its zero-maximum at v1 = 1 (staying below the abscissa) so
that the root v2 > v1 = 1. Load the script fuCase1.scr to see this picture.
Elliott de�nes this case as stable [9].

2. f(v) reaches its zero-minimum at v1 = 1 (staying above the abscissa) so
that the root v2 < v1 = 1. Load the script fuCase2.scr to see the picture.
Elliott de�nes this case as unstable [9].

Criterion 1 In terms of the spin !3, stability of the sleeping top (when the root
v2 > 1) means that

I23!
2
3

2I1Mgl
� 1 > 1;

I23!
2
3

2I1Mgl
> 2; !23 >

4I1Mgl

I23
;

!3 >
2
p
I1Mgl

I3
= !crit (28)

and respectively instability of the sleeping top (when the root v2 < 1) means that

!3 < !crit:
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Remark 16 It�s interesting that the critical value !crit here equals to the crit-
ical value (24) computed with � = 0 (as obtained in the study of the uniform
motion of the heavy top). The value (24) sets the low limit for !3 at which the
uniform motion is possible for the given tilt �: for the sleeping top � t 0. Then,
if !3 < !crit, the uniform motion is impossible, and the top will escape from the
near vertical position similarly to a pendulum. Otherwise, if !3 > !crit, the top
will move closely around the vertical in a manner depending on the initial _�. If
_� = 0, the motion will be chaotic, however if the _� is computed according to the
formula (24) for the uniform motion, the axis uniformly follows the direct cone
along a circle.

In the real world, due to friction, the vertical top initially spinning fast with
!3 > !crit, �nally loses its velocity !3 so that it becomes < !crit causing the
top tilt more and more until it falls.

Summary 1 The following comparison Table summarizes the condition of uni-
form motion for the three cases considered in the previous sections:

Uniform motion of... � L3; !3 _ 

Disk � 2 (0; �
2 ) L3; !3 > 0 _ > _ thresh

_�1;2 (6)
Top � 2 (0; �

2 ) !3 � !thresh _�1;2 (24)
Stable sleeping top � = 0 !3 > !crit (28)

Discussion

It�s instructive to compare numerical exploration of the Dzhanibekov e¤ect for
the free top with this case of the sleeping heavy top.
In the case of the Dzhanibekov e¤ect we could integrate the ODEs exactly

at the special points of interest � = �=2;  = k� exploring the behavior of the
solutions in the vicinity of those points.
On the contrary, in the case of the sleeping top, we cannot start at the point

of interest � = 0 exactly - because the available ODEs of the process are singular
at � = 0. We can start however in the close neighborhood of � = 0 comparing
the actual numeric behavior with the estimates suggested by Chloe Elliott in
[9].

Now play several simulations from the subfolder Sleeping.
In the following series of simulations the tilt � = 0:01 (radians) and !crit =

20 (computed in accordance with (28)).
Script �le !3 _� Trajectory of axis:

te01w25vs20.scr 25 0 !3 > !crit compact near the vertical
te01w25vs20f1Uniform.scr 25 1 (23) !3 > !crit small circle 0:01 radius
te01w25vs20f4Uniform.scr 25 4 (23) !3 > !crit small circle 0:01 radius
te01w15vs20.scr 15 0 !3 < !crit escapes away from vertical
te01w20vs20�0.scr 20 0 !3 = !crit less compact near vertical
te01w20vs20fUniform.scr 20 2 (25) !3 = !crit small circle 0:01 radius.
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In the cases of !3 = 25 and !3 = 15 we see a clear con�rmation of the
role of the Elliott�s critical value (28) when !3 is far away from it. At that,
when we set the right values of _� in accordance with (23), the axis trajectory
becomes exactly circular of 0:01 radius. For !3 = 15 < 20 the circular motion
is impossible.
For !3 = 20 it is still possible to set the right values of _� in accordance with

(23), (25).

There are also other script �les for the ODEs in �u with � closer to the
vertical, whose naming mnemonic re�ects the same logic.
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Appendix
The software basics and installation

A detailed outline of the Taylor Center software may be found here [1]. The hot
link in [1] for downloading it is:
http://taylorcenter.org/Gofen/TaylorCenterDemo.zip .
Download and unzip the �le ("Save", don�t "Open" it in your browser).

Unzip and keep it in an empty folder of your choice, TCenter.exe being the only
executable to run. Preserve this �le and sub-folders structure (in order that the
program work properly).
Then download a zipped structure of folders with script �les of the simula-

tions from here
http://taylorcenter.org/Exploratorium/RigidBody.zip
and unzip it into an empty folder of your choice, say RigidBody. This will

be your folder to navigate from the program TCenter.exe in order to pick the
necessary script and the �le SimulationsCatalog.rtf containing the list of all
script �les in this Exploratorium.
In the program you have to distinguish the Main (or Front) window, and

the Graph window (which displays trajectories). Within theMain window there
are 4 tabbed pages: Equation setting, Debugging, Integration setting, and Graph
setting. When you load a script, you immediately get into the Graph window
to play with the loaded simulation. However, in order to explore the ODEs and
parameters, you will have to visit the tabbed pages of the Main window.

1 Methods of loading and playing scripts

Here are several methods of loading scripts (occurring inside the pdf �le of this
Exploratorium) with various levels of automation.

1. No automation (when the Exploratorium is on paper). This is a general
case (unrelated to this Exploratorium) when you wish to load scripts from
any folder, say, Samples coming with the Taylor Center software. With
this method, in order to load a particular script �le (say, mentioned in
the print), go to File/Load script menu either in the Main or in Graph
window, and navigate to the desired folder in the open �le dialog box (the
mode of displaying in the dialog box must be detailed list in alphabetical
order). Examining this list, �nd the �le mentioned in the Exploratorium.
The moment you click Open, this �le will be run displaying the �nal picture
of the motion. Then, by clicking Play button, you can run the simulation
and watch the motion in real-time. Most simulation are in 3D stereo (on a
black background) requiring a pair of red/blue glasses. Clicking the check
box Axonometry, you can view them conventionally without the red/blue
glasses just as other 2D images.
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2. For this and the following methods, �rst load the catalog of all simu-
lations of this textbook under Demo/Load script list menu item in the
main window. There, in the Open �le dialog box navigate to your folder
RigidBody and in it open the �le SimulationsCatalog.rtf so that you will
see the list of all available simulations in the Help window. You can run
each of them by double clicking the desired �le at any place of the line
(instead of navigating inside all required sub-directories in Method 1).

More automation is available when this Exploratorium is a pdf �le which
you read at the same PC. While reading the pdf text from your screen,
when you wish to run a particular simulation, �rst select and copy the
desired �le name into the clipboard by your mouse. This is a pre-
sumption for the Methods 3 and 4 below when the check box Auto mode
is either unchecked, or checked

3. In the Help window the check box Auto mode is unchecked. Having the
script �le of interest already copied into the clipboard, just click over the
Help window activating it - and this action will trigger running of the
selected script in the clipboard.

4. In the Help window the check box Auto mode is checked, meaning that
the Taylor Center is in auto mode keeping to check whether the clipboard
has changed every half second. In this fully automatic mode, in order to
run every script of your interest mentioned in the pdf �le, all that you
need is to select it in the pdf reader and copy it into the clipboard. In a
matter of a second you will get this �le loaded and ready for playing in
the Taylor Center.

If you plan to compare graphs of some two related simulations, you may
load two instances of the TCenter.exe (especially if having a wide screen or
two monitors). Having the two instances of the program loaded, you may watch
still images at both, however do not initiate Playing simultaneously, because the
real-time playing function requires the entire resources of the PC exclusively.
After running a script from the Exploratorium, you may wish to make a

change in the initial values and constants in order to see their e¤ect. In order
to do it, look into the editor panes for Constants and Initial values in the Main
window, making the desired change. When a change is made, the Graph window
disappears, and you need to Compile the modi�ed problem. If the compilation
succeeded (i.e. you did not introduce mistakes), you will see the Graph page. In
it click the Previous button - which will bring you again to the Graph window
ready to play the modi�ed problem. After your changes, the previous setting of
the sizes may happen to be not the best. Click the button Adjust which adjusts
the sizes to create enough room for the image.
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The optimal conditions for stereo viewing

In order to perceive the real stereo, you need a pair of reg/blue glasses (the left
- red, the right - blue) putting them over your optical glasses used for reading
screens. If you do not have red/blue glasses, you still can watch the simulations
switching them into the mode of the conventional axonometric projection (the
check-box Axonom).

In order to achieve the best stereo e¤ect, the following setting should be
made for your monitor and environment.
In a case of a desktop monitor here are the optimal settings. . .

1. Better have a monitor with black matte surface.

2. The light in the room must be as little as possible so that the surface of
an inactive monitor look black.

3. Have a pair of Red/Blue glasses whose Red and Blue �lters let through
only the narrow spectrum of the respective colors. In order to test that
your glasses satisfy this criterion, overlap two pairs of such glasses with
the opposite �lters over each other and look at the bright light. Ideally,
the overlapped �lters must let through no light at all so that a bright light
source is hardly visible.

4. Set the Contrast of the monitor to the maximum value of 100.

5. Set the Brightness of the monitor as low as possible with such a goal that
the black on the monitor look absolutely black (rather than pale gray).
With modern high luminance monitors your brightness values may happen
to be as low as 10.

In a case of a screen projector. . .

� The light in the room must be zero.

� Set the Contrast of the projector to the maximum value of 100.

� Set the Brightness of the projector as low as possible with such a goal
that the black on the screen look absolutely black (rather than pale gray).
Your brightness values may happen to be as low as 10.

Both for a desktop and a screen projector the goal of the best setting is such,
that there be no ghost images visible, i.e. that the right eye see only the right
image in blue and nothing in red, while the left eye see only the left image in
red and nothing blue.
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