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Abstract

This article refers to the special transformation introduced several
decades ago [2, 3] used in studies of the 3 body problem. Not delving into
the mathematical essence of it (explained in the sources [2, 3]), here we
are to demonstrate the main properties and visualization of this transform
utilizing an advanced ODE solver called the Taylor Center [1], capable to
integrate initial value problems with high accuracy and to display solu-
tions as real time animations in 2D and 3D stereo (viewable via red/blue
glasses).

These unique graphical features are particularly instrumental for demon-
strating the behavior of the shape sphere transform on the unit sphere.

Introduction.

This special transformation introduced several decades ago [2, 3] applies specif-
ically for the plane 3 body Newtonian problem with point masses m1; m2; m3

�x1 = m3(x3 � x1)r31 �m2(x1 � x2)r12
�y1 = m3(y3 � y1)r31 �m2(y1 � y2)r12
�x2 = m1(x1 � x2)r12 �m3(x2 � x3)r23 (1)

�y2 = m1(y1 � y2)r12 �m3(y2 � y3)r23
�x3 = m2(x2 � x3)r23 �m1(x3 � x1)r31
�y3 = m2(y2 � y3)r23 �m1(y3 � y1)r31

at the initial positions (x1; y1) = q1; (x2; y2) = q2; (x3; y3) = q3, where

r12 = ((x1 � x2)2 + (y1 � y2)2)�3=2

r23 = ((x2 � x3)2 + (y2 � y3)2)�3=2

r31 = ((x3 � x1)2 + (y3 � y1)2)�3=2:
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The shape sphere transform (q1; q2; q3) 7�! (u1; u2; u3) maps triplets
of initial points (q1; q2; q3) into the points (u1; u2; u3) of the unit sphere
u21 + u

2
2 + u

2
3 = 1 (called the shape sphere) by the following formulas. First we

obtain the so called Jacobi coordinates �1; �2

�1 = (q1 � q2)
r

m1m2

m1 +m2
(2)

�2 =

s
m3(m1 +m2)

m1 +m2 +m3

�
q3 �

m1q1 +m2q2
m1 +m2

�
;

q1; q2; q3; �1; �2 2 E2: Then - the values

w1 =
j�1j2 � j�2j2

2
(3)

w2 = (�1; �2)

w3 = j�1 � �2j

called the shape space (w1; w2; w3) 2 E3. Finally, the points (u1; u2; u3) on
the unit sphere

ui =
wi
jwj ; i = 1; 2; 3 (4)

called the shape sphere.

Notation 1 There are two distinct concepts: the shape sphere and the shape
space. We denote the points of a unite sphere called the shape sphere (u1; u2; u3),
and the points of shape space (w1; w2; w3). Here is the table of correspondence
of notations in di¤erent authors:

This paper Kerrigan [2] Reichert [3] Montgomery [4]
Shape space w1; w2; w3 w1; w2; w3 w1; w2; w3 w1; w2; w3
Shape sphere u1; u2; u3 w01; w

0
2; w

0
3

Correspondingly, we will use expressions w-transform and w-points vs. u-
transform u-points.

By its construction, the points of the shape sphere have the fundamental
property expressed in the following Theorem.

Theorem 1 All triplets of points (q1; q2; q3); qi 2 E2 having respectively the
same masses m1; m2; m3, which comprise similar triangles1 in the same orien-
tation map into one u-point (u1; u2; u3) on the shape sphere. The points making
the similar triangles in the opposite orientation map into the point (u1; u2; �u3)
on the shape sphere. The triplets representing syzygies map onto the equator
u3 = 0 of the sphere.

1 I.e. triangles 4ABC with the same proportions between the edges AB; AC; BC and
with the same angles �; �; .
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Proof 1 Let complex numbers z1; z2; z3 represent a triangle 4ABC, while
�z1; �z2; �z3 represent a re�ection of 4ABC about the abscissa i.e. the triangle
in the opposite orientation. Then c + kz1; c + kz2; c + kz3 , where c and k
are complex numbers, represent a triangle 4A0B0C 0 similar to 4ABC (possibly
translated and turned). At that, if k = rei�; then � means a turn of 4ABC by
the angle �, and r the stretch of it.

1. Similarity. Apply formula (2) for the 4A0B0C 0 obtaining �01; �02 for the
4A0B0C 0

�01 = (c+ kz1 � c� kz2)
r

m1m2

m1 +m2

�02 =

�
c+ kz3 �

m1(c+ kz1) +m2(c+ kz2)

m1 +m2

�s
m3(m1 +m2)

m1 +m2 +m3
;

so that

�01 = k�1

�02 = k�2:

Similarly obtain w01; w
0
2; w

0
3 for the 4A0B0C 0 keeping in mind that jkj =

r :
w0i = wir

2; i = 1; 2; 3: (5)

This demonstrates, that the triplet w1; w2; w3 does not depend on turn
� any more though still depending on the stretch r. However, these values
w01; w

0
2; w

0
3 being normalized to the unit sphere by formula (3), lose the

factor r2 so that u0i = ui; i = 1; 2; 3; meaning that the similar triangles
in the same orientation map into one point (u1; u2; u3).

2. Re�ection. Apply formula (2) for �z1; �z2; �z3 noticing that

�1(�z1; �z2; �z3) = �1(z1; z2; z3) = ��1

�2(�z1; �z2; �z3) = �2(z1; z2; z3) = ��2:

Spell out the scalar and vector products. If

�1 = a1 + ib1

�2 = a2 + ib2

then

(�1; �2) = a1a2 + b1b2

j�1 � �2j =

����a1 b1
a2 b2

���� :
Therefore, according to (3), the conjugation (changing the sign of b1; b2)
does not a¤ect u1; u2 , but changes the sign of u3 to the opposite.
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3. Syzygy, i.e. q1; q2; q3 are collinear. Consider a line l made by q1; q2.
Observe that �1 is proportional to the vector q1 � q2. Analyzing �2,

observe that
m1q1 +m2q2
m1 +m2

is a point on l, q3 belongs to l too, therefore

�2jj�1 so that !3 = 0 in (3).

Let�s reformulate this Theorem for points w1; w2; w3 of the shape space in
which the similarity must be replaced with congruency of triangles.

Theorem 2 All triplets of points (q1; q2; q3); qi 2 E2 having respectively
the same masses m1; m2; m3, which make congruent triangles in the same
orientation map into one w-point (w1; w2; w3) in the shape space. The points
making the congruent triangles in the opposite orientation map into the point
(w1; w2; �w3) in the shape space. The triplets representing syzygies map onto
the plane w3 = 0.

Corollary 1 If the three bodies move keeping the formation of similar triangles
(though possibly changing the sizes), they map into one u-point, but into di¤erent
w-points belonging to a particular ray with the origin in the center of the shape
sphere (follows from (5)).

Exercise 1 Consider an equilateral triangle, say z1 = �1; z2 = 1; z3 = i
p
3

for the equal masses m1 = m2 = m3. Applying formulas (2), check that for
this equilateral triangle j�1j2 = j�2j2 and �1?�2 so that (according to (3)),
w1 = w2 = 0; and consequently u1 = u2 = 0; while u3 = �1. This means that
all equilateral triangles map onto the North or South poles of the shape sphere.

After this piece of theory, let�s get back to our goal: to visualize the behavior
of this transform utilizing the dynamical graphics (real time animation) of the
Taylor Center software [1]. Unlike a static graph, this real time animation allows
to display the dynamic of a speci�c motion: in conventional plane (in 2D) and
on the shape sphere in 3D stereo.

The computer representation.

In all the simulations below the ODEs (1) in computer representation take form:

t�= 1
x1�= vx1
y1�= vy1
x2�= vx2
y2�= vy2
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x3�= vx3
y3�= vy3
vx1�= m3*dx31*r31 - m2*dx12*r12
vy1�= m3*dy31*r31 - m2*dy12*r12
vx2�= m1*dx12*r12 - m3*dx23*r23
vy2�= m1*dy12*r12 - m3*dy23*r23
vx3�= m2*dx23*r23 - m1*dx31*r31
vy3�= m2*dy23*r23 - m1*dy31*r31

preceded by the auxiliary variables and equations like

r31 = (dx31^2 + dy31^2)^m15

(where m15 = -1.5).

In order to visualize the shape sphere motion, we have to add a few constants
into the section of constants

sqm1m2 = sqrt(m1*m2/(m1 + m2) )
sqm1m2m3 = sqrt(m3*(m1 + m2)/(m1 + m2 + m3 ) )
m1plm2 = m1 + m2

and the following equations into the auxiliary section:

ro1x = sqm1m2*(x1 - x2)
ro1y = sqm1m2*(y1 - y2)
ro2x = sqm1m2m3*(x3 - (m1*x1 + m2*x2)/m1plm2)
ro2y = sqm1m2m3*(y3 - (m1*y1 + m2*y2)/m1plm2)
w1 = (ro1x^2 + ro1y^2 - ro2x^2 - ro2y^2)*0.5
w2 = ro1x*ro2x + ro1y*ro2y
w3 = ro1y*ro2x - ro1x*ro2y
r = sqrt(w1^2 + w2^2 + w3^2)
u1 = w1/r
u2 = w2/r
u3 = w3/r

encoding the formulas of the shape sphere transform. All of them are in-
cluded into the respective scripts analyzed in the next section.
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Simulations visualizing the properties of the shape
sphere.

Let�s begin with the classical Lagrange and Euler cases. In the Lagrange case
the three bodies move in a formation of equilateral triangles which rotate and
(generally) change the size, yet all mapping into one point of the shape sphere
(by the Theorem 1) which is the North or South Poles (according to the Exer-
cise).
In the Euler case the three bodies move in syzygy mapping into a point of

the equator of the shape sphere.
Those changing formations (triangles or lines), however, map into one u-

point of the shape sphere as long, as the process of numeric integration preserves
the high enough accuracy of the solutions of the Lagrange and Euler cases
(i.e. as long as the solution preserves the particular formation). However, after
several cycles, the accuracy lowers, and the integration errors disturb the initial
formation making it chaotic. When this happens, we see how the so far steady
u-point of the shape sphere (corresponding to the initial formations) jumps into
a motion on the surface of the sphere as soon as the three body slide into the
chaotic motion.
In the simulations below typically it is recommended �rst to see the dynamic

of conventional motion in a 2D plane, then - the corresponding motion on the
unit sphere in 3D, or both. (All 3D simulations must be viewed either using
the Red/Blue anaglyph glasses for full stereo perception, or in the axonometric
mode without glasses - see the Appendix).

The Lagrange case for n equal masses.

The equal masses are placed at the vertices of the planar regular polygon. The
vectors of their velocities must belong to a regular polygon in the same plane
too being of the same absolute value. This value determines which type of the
conic sections (ellipse, parabola, or hyperbola) all of the bodies follow. Moving
along these conic sections, the bodies stay in the formation similar to the initial
polygon, which may turn and stretch. In order to play with n body Lagrange
case, go to Set n-body problem, Planar, Elliptic in the Taylor Center program.
Back to our 3-body study, load a 2D script �le LagrangeEqMasses.scr . Click

Play and watch, how the three bodies �rst perform the elliptic Kepler motion
in the formation of similar equilateral triangles. Then, after several loops, the
formation is getting disturbed into chaotic motion.
Now load a 3D �le LagrangeEqMassesBoth.scr displaying the same motion

of the 3 bodies plus the point (u1; u2; u3) on the North pole of the shape
sphere. Watch how in accordance with the theory, the point (u1; u2; u3) stays
at the North pole steady until the very end, when this point jumps as soon as
the bodies slide into chaotic motion.
Finally load and play a 3D �le LagrangeEqMassesw1w2w3.scr . Now, along

with the planar motion of the 3 bodies, you can see the an oscillation of the
point (w1; w2; w3) along a straight line (a vertical ray) synchronized with the
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stretching of the equilateral triangle: as long as the motion of the bodies remains
regular.

The Lagrange case for 3 unequal masses m1; m2; m3.

The Lagrange case for unequal masses is possible only for n = 3 and is less
intuitive. The three bodies also move along the conic sections of the same
type preserving the formation of equilateral triangles. The initial values are
computed by the following formulas.
The initial equilateral triangle

a1 = 0:5; b1 = 0

a2 = 0; b2 =

p
3

2
a3 = �0:5; b3 = 0:

Then it�s center of masses

cx =
m1a1 +m2a2 +m3a3
m1 +m2 +m3

cy =
m1b1 +m2b2 +m3b3
m1 +m2 +m3

:

Then the initial positions

x1 = a1 � cx
y1 = b1 � cy
x2 = a2 � cx
y2 = b2 � cy
x3 = a3 � cx
y3 = b3 � cy:

Then

r1 =
q
x21 + y

2
1

r2 =
q
x22 + y

2
2

�1 = arcsin
y1
r1

�2 = arcsin
y2
r2
:

And �nally, with an arbitrary chosen parametric velocity v, the initial velocities
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are

vx1 = vr1 cos(�1 + �=2)

vy1 = vr1 sin(�1 + �=2)

vx2 = vr2 cos(�2 + �=2)

vy2 = vr2 sin(�2 + �=2)

vx3 = �m1vx1 +m2vx2
m3

vy3 = �m1vy1 +m2vy2
m3

where value v determines eccentricities of the conic sections.
In order to obtain the circular Lagrange motion, v must be calculated in

the following way:

r12 =
�
(x1 � x2)2 + (y1 � y2)2

��3=2
r31 =

�
(x3 � x1)2 + (y3 � y1)2

��3=2
v =

s
(m3(x3 � x1)r31 �m2(x1 � x2)r12))

r1 cos�1

which is the condition that the centrifugal force acting at a body is compensated
with the gravity force.

Load a 2D script �le LagrangeUneqMasses.scr . Click Play and watch, how
the three bodies �rst perform the Kepler motion along ellipses of di¤erent sizes,
yet preserving the formation of similar equilateral triangles. Then, after several
loops, the formation disturbs into chaotic motion.
Now load a 3D �le LagrangeUneqMassesBoth.scr displaying the same motion

of the 3 bodies plus the point (u1; u2; u3) on the shape sphere. Watch how in
accordance with the theory, the point (u1; u2; u3) stays steady until the very
end, when it jumps as soon as the bodies slide into chaotic motion. Observe
that now, unlike in the case of equal masses above, (u1; u2; u3) stays not at the
North pole - because even though the triangles are still equilateral, the masses
are not equal.
Load a 3D �le LagrangeUneqMassesuw1uw2uw3.scr to watch simultaneously

(u1; u2; u3) and (w1; w2; w3).
Then load a 3D �le LagrangeUneqMassesxyzuv.scr to watch simultaneously

the bodies, (u1; u2; u3) and (w1; w2; w3). Observe, that now the w-points
oscillate along a ray declined to the horizon.
In the simulations above the bodies move in the formation of equilateral

triangles whose size changes. There exists, however, a special setting when the
conic section type of the trajectories is circular so that the triangles remain
congruent (during the regular phase of the motion). Therefore as long as the
triangles remain congruent, they map into one w-point (rather than into a ray).
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Load a 2D �le LagrangeCircUneqMasses.scr to watch the circular motion in
a plane.
Then load a 3D �le LagrangeCircUneqMassesw1w2w3.scr displaying how the

w-point is steady (rather than oscillating) until it jumps into chaotic motion.
Finally, consider a simulation of a disturbed Lagrange case where the state

of chaos happens almost immediately: load and play a 2D �le 3Bod9995.scr .
At the beginning the bodies make a piece of ellipse falling into chaotic dance
after a short while.
Now load and play a 3D �le 3Bod9995u1u2u3.scr displaying the respective

motion of (u1; u2; u3). Watch that this point too remains steady for short
while, and then jumps into a random motion on the surface of the sphere.

The Euler case for masses m1; m2; m3

The Euler case is such that the three body move preserving the collinear forma-
tion. The initial setting for this case requires that the proportions between the
masses m1; m2; m3 and the distances between them satisfy special equations.
The initial values are computed by the following formulas. It is presumed

that y1 = y2 = y3 = 0; while

x1 = 0; x2 = 1; x3 = x2 + r

where r may be de�ned arbitrarily (r = 2 in the following simulations). The
value r must satisfy the polynomial equation of degree 5:

(m1+m2)r
5+(3m1+2m2)r

4+(3m1+m2)r
3�(m2+3m3)r

2�(2m2+3m3)r�(m2+m3) = 0:

However, with r chosen, we do not need to solve it. It su¢ ces to arbitrarily
choose m1 and m2 (we set m1 = 19, m2 = 38) and then

m3 =
m1(r

5 + 3r4 + 3r3) +m2(r
5 + 2r4 + r3 � r2 � 2r � 1

3r2 + 3r + 1
:

Then the center of masses

c =
x1m1 + x2m2 + x3m3

m1 +m2 +m3

and the velocities are de�ned as follows. Setting vx1 = vx2 = vx3 = 0 and
an choosing an arbitrary (parametric) vy1 which a¤ects the eccentricity of the
ellipses or other conic sections (here vy1 = 8),

vy2 =
x2 � c
x1 � c

vy1

vy3 =
x3 � c
x1 � c

vy1:
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In order to obtain the circular Euler motion, vy1 must be calculated in the
following way:

r12 =
�
(x1 � x2)2 + (y1 � y2)2

��3=2
r31 =

�
(x3 � x1)2 + (y3 � y1)2

��3=2
vy1 =

p
j(m3(x3 � x1)r31 �m2(x1 � x2)r12)(x1 � c))j

which is the condition that the centrifugal force acting at a body is compensated
with the gravity force.
This completes the setting of the initial values for the Euler case.

Load a 2D script �le Euler.scr , click Play and watch how at the beginning
the bodies in a linear formation run along ellipses, until the formation is ruined
at the end into chaotic motion.
Now load a 3D �le EulerBoth.scr and click Play. At the beginning and

almost to the end you can see the three bodies ful�lling the motion in a linear
formation along ellipses plus the point (u1; u2; u3) on the equator of the shape
sphere, where it remains steady as it should as long as the three bodies move
regularly. However, when the bodies slide into chaotic motion, so does also the
point (u1; u2; u3).
Finally load a 3D �le Eulerw1w2w3.scr displaying the motion of the w-

point for the Euler degenerated and congruent (rather than similar) triangles.
Watch the oscillation of the w-point along a ray in the equatorial plane (till the
formation ruins).
That was the elliptic motion.
Now load and Play �rst the 2D �le EulerCircular.scr displaying the circular

motion in a plane (until it breaks into a chaos).
Then load and Play a 3D �le EulerCircularw1w2w3.scr displaying the motion

of the w-point for the Euler degenerated and congruent (rather than similar)
triangles. Now this w-point remains still (rather than oscillating) until the
formation breaks into a chaos.

Three bodies free fall periodic motion [5].

Here we are to demonstrate one of newly discovered cases of free fall of three
bodies having remarkable properties. In a typical random setting trajectories
of three body motion are chaotic. That is why the discovery of the cases of
periodic fall by Xiaoming Li and Shijun Liao [6] (2018) is so amazing. They have
discovered hundreds of settings for resting three bodies of particular masses,
which led to periodic motion: i.e. the bodies started at the given points of rest
and returned back to their initial points after motion along sophisticated orbits
during a period T . It�s worth particular mentioning that ...

� In the discovered periodic trajectories the initial moment is not the only
resting point. The number of moments of full stop in every such trajectory
is exactly 2: namely the initial moment and the moment T=2 where all
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three bodies come to rest also at other points of space and generally in a
di¤erent formation.

� The three bodies oscillate between a pair of the initial and second set of
the rest points (a particular pair of sets for each simulation).

In the Taylor Center software you can watch 30 cases of such free fall simu-
lations for the equal masses under Demo/Three bodies/Periodic free fall.
Among those 30 cases there are particularly remarkable ones when the two

formations of the rest are congruent triangles in opposite orientation (while
typically those two rest formations are unrelated triangles).
First load and play 2D �le XiaomingLIAO14.scr to watch the free fall in its

dynamic in a plane. This simulation displays how the points reach the second
con�guration of rest during a half-period of their motion.
Then load a 2D �le XiaomingLIAO14Return.scr displaying how the bodies

return into the initial position during the full period of the motion.
Now you can watch the respective motion of point (u1; u2; u3) on the shape

sphere and also of the points (w1; w2; w3) in the shape space loading 3D �les

� XiaomingLIAO14Both.scr - (u1; u2; u3) on the shape sphere;

� XiaomingLIAO14w1w2w3.scr - (w1; w2; w3) in the shape space.

Observe that in both cases u3 or w3 change the sign at the second rest
point, as they should because the triangles are in the opposite orientation so
that the points (u1; u2; u3) corresponding to the rest are in opposition, just as
(w1; w2; w3) are.

The 8-shape choreography

Our �nal simulation is that of the 8-shape choreography: the simplest in the
list of 345 (compiled by Carles Simo [7]). Choreography is such a formation
when three bodies move along the same periodic curve one after the other. In
the Taylor Center software you can watch all 345 of them under Demo/Three
bodies/Choreography.
Load and play 2D �le Simo1.scr displaying 8-shape choreography in plane.
Now load and play 3D �le Simo1Both.scr displaying 8-shape choreography

in plane and on the shape sphere.

Conclusion

We have reviewed the special transformations into the shape sphere and shape
space introduced by the scholars studying the three body problem. The Taylor
Center software happened to be particularly instrumental for visualizing the
dynamic of motion both conventionally in a plane and on the shape sphere in
3D stereo.
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The software basics and installation

A detailed outline of the Taylor Center software may be found here [1]. The hot
link in [1] for downloading it is:
http://taylorcenter.org/Gofen/TaylorCenterDemo.zip .
Download and unzip the �le ("Save", don�t "Open" it in your browser).

Unzip and keep it in an empty folder of your choice, TCenter.exe being the only
executable to run. Preserve this �le and sub-folders structure (in order that the
program work properly).
Then download a zipped structure of folders with script �les of the simu-

lations from here http://taylorcenter.org/Exploratorium/ShapeSphere.zip and
unzip it into an empty folder of your choice, say ShapeSphere. This will be your
folder to navigate from the program TCenter.exe in order to pick the necessary
script and the �le SimulationsCatalog.rtf containing the list of all script �les in
this Exploratorium.
In the program you have to distinguish the Main (or Front) window, and

the Graph window (which displays trajectories). Within theMain window there
are 4 tabbed pages: Equation setting, Debugging, Integration setting, and Graph
setting. When you load a script, you immediately get into the Graph window
to play with the loaded simulation. However, in order to explore the ODEs and
parameters, you will have to visit the tabbed pages of the Main window.
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Methods of loading and playing scripts

Here are several methods of loading scripts (occurring inside the pdf �le of this
Exploratorium) with various levels of automation.

1. No automation (when the Exploratorium is on paper). This is a general
case (unrelated to this Exploratorium) when you wish to load scripts from
any folder, say, Samples coming with the Taylor Center software. With
this method, in order to load a particular script �le (say, mentioned in
the print), go to File/Load script menu either in the Main or in Graph
window, and navigate to the desired folder in the open �le dialog box (the
mode of displaying in the dialog box must be detailed list in alphabetical
order). Examining this list, �nd the �le mentioned in the Exploratorium.
The moment you click Open, this �le will be run displaying the �nal picture
of the motion. Then, by clicking Play button, you can run the simulation
and watch the motion in real time. Most simulation are in 3D stereo (on a
black background) requiring a pair of red/blue glasses. Clicking the check
box Axonometry, you can view them conventionally without the red/blue
glasses just as other 2D images.

2. For this and the following methods, �rst load the catalog of all simula-
tions of this textbook under Demo/Load script list menu item in the main
window. There, in the Open �le dialog box navigate to your folder Shape-
Sphere and in it open the �le SimulationsCatalog.rtf so that you will see
the list of all available simulations in the Help window. You can run each
of them by double clicking the desired �le at any place of the line (instead
of navigating inside all required sub-directories in Method 1).

More automation is available when this Exploratorium is a pdf �le which
you read at the same PC. While reading the pdf text from your screen,
when you wish to run a particular simulation, �rst select and copy the
desired �le name into the clipboard by your mouse. This is a pre-
sumption for the Methods 3 and 4 below when the check box Auto mode
is either unchecked, or checked.

3. In the Help window the check box Auto mode is unchecked. Having the
script �le of interest already copied into the clipboard, just click over the
Help window activating it - and this action will trigger running of the
selected script in the clipboard.

4. In the Help window the check box Auto mode is checked, meaning that
the Taylor Center is in auto mode keeping to check whether the clipboard
has changed every half second. In this fully automatic mode, in order to
run every script of your interest mentioned in the pdf �le, all that you
need is to select it in the pdf reader and copy it into the clipboard. In a
matter of a second you will get this �le loaded and ready for playing in
the Taylor Center.
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If you plan to compare graphs of some two related simulations, you may
load two instances of the TCenter.exe (especially if having a wide screen or two
monitors). Having the two instances of the program loaded, you may watch still
images at both, however do not initiate Playing simultaneously, because the real
time playing function requires the entire resources of the PC exclusively.
After running a script from the Exploratorium, you may wish to make a

change in the initial values and constants in order to see their e¤ect. In order
to do it, look into the editor panes for Constants and Initial values in the Main
window, making the desired change. When a change is made, the Graph window
disappears, and you need to Compile the modi�ed problem. If the compilation
succeeded (i.e. you did not introduce mistakes), you will see the Graph page. In
it click the Previous button - which will bring you again to the Graph window
ready to play the modi�ed problem. After your changes, the previous setting of
the sizes may happen to be not the best. Click the button Adjust which adjusts
the sizes to create enough room for the image.

The optimal conditions for stereo viewing

In order to perceive the real stereo, you need a pair of reg/blue glasses (the left
- red, the right - blue) putting them over your optical glasses used for reading
screens. If you do not have red/blue glasses, you still can watch the simulations
switching them into the mode of the conventional axonometric projection (the
check-box Axonom).

In order to achieve the best stereo e¤ect, the following setting should be
made for your monitor and environment.
In a case of a desktop monitor here are the optimal settings. . .

1. Better have a monitor with black matte surface.

2. The light in the room must be as little as possible so that the surface of
an inactive monitor look black.

3. Have a pair of Red/Blue glasses whose Red and Blue �lters let through
only the narrow spectrum of the respective colors. In order to test that
your glasses satisfy this criterion, overlap two pairs of such glasses with
the opposite �lters over each other and look at the bright light. Ideally,
the overlapped �lters must let through no light at all so that a bright light
source is hardly visible.

4. Set the Contrast of the monitor to the maximum value of 100.

5. Set the Brightness of the monitor as low as possible with such a goal that
the black on the monitor look absolutely black (rather than pale gray).
With modern high luminance monitors your brightness values may happen
to be as low as 10.
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In a case of a screen projector. . .

� The light in the room must be zero.

� Set the Contrast of the projector to the maximum value of 100.

� Set the Brightness of the projector as low as possible with such a goal
that the black on the screen look absolutely black (rather than pale gray).
Your brightness values may happen to be as low as 10.

Both for a desktop and a screen projector the goal of the best setting is such,
that there be no ghost images visible, i.e. that the right eye see only the right
image in blue and nothing in red, while the left eye see only the left image in
red and nothing blue.
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