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Abstract. This paper is dedicated to the two classical transcendental func-
tions: The locus of points for which powers commute, and the locus of points
for which powers associate. These classical functions however are considered in
a new perspective: as holomorphic solutions of ODEs passing over the points
of singularity of these ODEs.

Generally, solution functions which are holomorphic at singular points of
the phase space of ODEs were studied in [2,3], and it was shown in [3], that
certain holomorphic functions may satisfy only singular rational ODEs. This
is the frame in which the function of commuting or associating powers are
considered in this paper.

First we obtain several types of ODEs satis�ed by these functions. The
obtained ODEs happen to have singular points, yet the solutions are proved
to be holomorphic at these points, and their Taylor expansions are obtained.
However it is not yet known whether these two transcendental functions can
satisfy a regular rational ODE at the respective special points. The article also
poses an open question about remarkable inequalities related to the commuting
powers.

1. Introduction

Operation of raising into power generally is neither commutative nor associative.
However for certain subsets of real numbers the powers do commute or associate,
and the respective locuses are de�ned via transcendental functions having remark-
able graphs (see below). These classical functions have been known and studied for
a long time, as it is summarized in the review [1].
Here we are going to study these functions from the view point presented in [2],

section 8, 8.2: To obtain ODEs satis�ed by these functions, and to evaluate their
Taylor coe¢ cients at singular points of the phase space.
Originally, both functions are de�ned by implicit transcendental equations, but

they also satisfy certain elementary ODEs [2]. For both of them the ODEs have a
point of singularity at which the solutions however are regular. These are the so
called regular singularities already introduced and studied in our previous works
[2].
Along this paper, the concepts of di¤erentiability and holomorphy are understood

as in the complex space.
Some important ODEs and examples considered in this paper may be displayed,

and experiments with them may be made using the free software referred in Ap-
pendix 1.

Key words and phrases. Commuting powers, associating powers, singular ODE, regular
singularity.
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2. Commuting powers

We are considering pairs (x; y) of real numbers x; y > 0 for which

(2.1) xy = yx; or F (x; y) = xy � yx = 0:
The trivial solution of this transcendental equation is identity function y = x in-
deed. Yet this equation must have also a non-trivial solution: for example the
points (2; 4) and (4; 2) satisfy (2.1) and at those points the partial derivatives

@F

@y
= xy lnx� xyx�1 = xy lnx� yxx

y
= xy

�
lnx� x

y

�
exist and are nonzero, so that the nontrivial solution y(x) surely exist in a neigh-
borhood of those points (see Fig 1).

Observe that at one particular point (e; e) the partial derivative
@F

@y

����
(e;e)

= 0

meaning that (e; e) is a singular point of the equation (2.1) - subject of a special
study in this article.
Further on, y(x) denotes only the non-trivial solution of equation (2.1). As it

was shown in [1], equation (2.1) admits a remarkable parametric solution

(2.2) x =

�
1 +

1

t

�t
; y =

�
1 +

1

t

�t+1
which in particular delivers in�nitely many rational solutions of (2.1) and the above
mentioned (2; 4) and (4; 2) - the only integer solutions.
Not touching the various properties of the equation (2.1) well covered in [1], here

we are looking for representations of the y(x) as a solution of certain ODEs and
then obtaining its (formal) expansion into a Taylor series at the special point (e; e).

Theorem 1. Function y(x) satis�es the ODEs

(2.3) y0 =

y

x
� ln y

x

y
� lnx

=
�y
x

�2 ln x
e

ln
y

e

regular at all points of the phase space except the point x = y = e:

Proof. Di¤erentiate the equation (2.1)

0 = y0xy lnx+ yxy�1 � yx ln y � y0xyx�1 = y0xy lnx+ y

x
xy � yx ln y � y0x

y
yx:

Dividing by xy = yx 6= 0 we get

0 = y0 lnx+
y

x
� ln y � y0x

y

yielding both required formulas (2.3). If y � x, the ODE reduces to a trivial one
y0 � 1: For a non-trivial y(x); this ODE is singular at the point (e; e). �

Therefore both trivial and non-trivial solutions are holomorphic at all points
except possibly (e; e). The identical solution is holomorphic also at this point
indeed. As to y(x), we will establish that it is holomorphic at this point later.
The ODE (2.3) is not polynomial. In the next Theorem we will obtained a

polynomial ODE satis�ed by y(x).
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Theorem 2. The function y(x) satis�es the polynomial ODE

(2.4) y00x2y2(y � x)� (y0)3x4 + (y0)2yx2(3x� 2y) + y0y2x(3y � 2x)� y4 = 0:

Proof. From yx = xy we get y = x
y
x : Di¤erentiating it we obtain

y0 =
y

x
x
y
x�1 +

y0x� y
x2

x
y
x lnx = y

�
y

x2
+
y0x� y
x2

lnx

�
:

Solving the latter equation for lnx we get that

lnx =
y0x2 � y2
y0yx� y2 :

Di¤erentiating again and rearranging the equation we get the ODE (2.4). �

Remark 1. ODE (2.4) is also singular at the point where y = x: At this point the
monomial with y00 disappears, while for the value y0jx=e = a we get from (2.4)
that

(�a3 + a2 + a� 1)e4 = 0 or (a2 � 1)(a� 1) = 0
yielding two possible values for y0jx=e = �1: For the nontrivial solution y0jx=e =
�1:

2.1. Evaluation of the formal Taylor expansion at the point (e; e). At every
regular point (x; y) of (2.3) the solution y(x) is holomorphic, and all its derivatives
may be evaluated via di¤erentiation of equation (2.1) or (2.3). Evaluation of the
Taylor coe¢ cients of the solution may be possible also at singular points of the phase
space of ODEs by analyzing and solving the so called generating algebraic system
(in which the polynomial ODE (2.4) would be the �rst equation). As it follows
from the Remark, the equation (2.4) has exactly two solutions - the components
of two possible Taylor expansions: (e; 1; 0; 0; 0; :::) corresponding to the trivial
solution, and (e; �1; a2; a3; :::) corresponding to the nontrivial solution. However
the polynomial ODE (2.4) is too complicated for evaluation of the components
a2; a3; :::
To avoid cumbersome transformations and computations, it makes more sense to

di¤erentiate (2.1) by applying the formulas of automatic di¤erentiation (AD) [4,5]
to the simplest of the available equation for y(x) :

x ln y = y lnx or xv = y lnx; where v = ln y:

The AD formulas operate with the so called normalized derivatives denoted with

square brackets: y[n]
def
=

y(n)

n!
. (Normalized derivatives are in fact the respective

Taylor coe¢ cients). According to the AD formulas,

v[n] =
1

y

 
y[n] �

n�1X
i=1

(1� i

n
)y[i]v[n�i]

!
; n � 1(2.5)

(xv)[n] = xv[n] + v[n�1]; n � 2

(y lnx)[n] = y[n] lnx+
nX
i=1

y[n�i](�1)i�1
ixi

; n � 1:

Continuing the process of di¤erentiation at the point x = e applying these formulas,
we see that beginning from n � 2 the highest available derivative y[n+1] appears
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only in a linear algebraic equations and may be readily obtained.

y[n+1] =
nX
i=0

y[n�i]

(i+ 2)(�e)i+1+(2.6)

+
2m+ 3

n+ 2

nX
i=1

(1� i

n+ 1
)y[i]v[n+1�i] + e

nX
i=2

(1� i

n+ 2
)y[i]v[n+2�i]; n � 1:

v[n+1] =
1

y

 
y[n+1] �

nX
i=1

(1� i

n+ 1
)y[i]v[n+1�i]

!
The �rst 15 values of y[n]jx=e and their structure are shown in the Table below.

n y[n]jx=e Rational factors only Values

1 �1 �1
2 5

3
1
e

5
3 0:6131324019524038693258730

3 � 25
9
1
e2

52

32 �0:3759313423239241441499986
4 1243

270
1
e3

11�113
2�33�5 0:2292049110416847449011949

5 � 1229
162

1
e4

1229
2�34 �0:1389501246558907875369102

6 14107
1134

1
e5

14107
2�34�7 0:08382029833871136184501299

7 � 575927
28350

1
e6

11�41�1277
2�34�52�7 �0:05035556630867463165817052

8 4217764
127575

1
e7

22�1054441
36�52�7 0:03014777916178779933005792

9 � 1408003
26244

1
e8

211�6673
22�38 �0:01799772848935453347797715

10 18804662561
216513000

1
e9

149�1091�115679
23�39�53�11 0:01071843133007776772407456

11 � 4465808232533
31827411000

1
e10

41�10949�9948137
23�310�53�72�11 �0:006370212773188646017307121

12 561757387253483
2482538058000

1
e11

281�1999136609443
24�311�53�72�11�13 0:003779319220659389337334455

13 � 55382063966903
151992126000

1
e12

3719�14891654737
24�312�53�11�13 �0:002238794670049279589672062

14 6546034449396991
11171421261000

1
e13

6546034449396991
23�313�53�72�11�13 0:001324468375097206276459089

15 � 52573598131492979
55857106305000

1
e14

8855401�5936896379
23�313�54�72�11�13 �0:0007826480747899546369361984

The Table1 of the Taylor coe¢ cients of y(x) at point (e; e) obtained via the
formulas (2.6)

The formulas (2.6) are recursive �nite di¤erence equations for obtaining the
components of the solution-vector (and we do not know if the �nite convoluted
formula exists). Therefore, having only the recursive formula of the coe¢ cients,
we cannot determine whether the convergence radius of this Taylor expansion is
nonzero (nor can we even make a guess about the general term observing these
available 15 factorized coe¢ cients).
We will establish that y(x) is in fact holomorphic at x = e in the following

Theorem.

Theorem 3. Function y(x) is holomorphic at the point x = e:

1Courtesy to Lòczi Lajos who obtained the multi-digit rational coe¢ cients of the expansion
and their factorization using the symbol-processing software "Maple".
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Proof. Satisfying the ODE (2.3), functions y(x) is di¤erentiable and holomorphic
in a neighborhood of the point (e; e) except may be this point itself. In order to
establish that y(x) is holomorphic also at this point, according to the Riemann
Removable Singularities Theorem2 it is enough to prove that y(x) can be continu-
ously extended over the point (e; e): Recalling the parametric representation (2.2),
both limits below do exist

lim
t!1

y(t) = lim
t!1

�
1 +

1

t

�t+1
= e; and lim

t!1
x(t) = lim

t!1

�
1 +

1

t

�t
= e

and do approach the point (e; e), which proves the Theorem. �

Therefore we have established that function y(x) is holomorphic at x = e without
direct analysis of the general term of its Taylor expansion (which is unavailable).
For this reason alone we cannot apply the method presented in [3] for trying to
prove that y(x) can satisfy no regular rational or polynomial ODE at this point.
This question remains open.
Now take a look at the graph of y(x) (Fig 1):

2http://www.proofwiki.org/wiki/Riemann_Removable_Singularities_Theorem

http://www.proofwiki.org/wiki/Riemann_Removable_Singularities_Theorem
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Fig. 1. The trivial (red) and non-trivial (black) solution of xy = yx

For points (a; b) of the plane above the curve y(x); ab � ba equality being
reached if a = b : 32 = 25 > 52 = 25:
For points (a; b) of the plane below the curve y(x); ab � ba : 8 = 23 < 32 = 9:
It is easy to observe that the function y(x) resembles hyperbola (yet not coin-

cides with it indeed). The unique hyperbola passing through the point (e; e) and
having the same asymptotes y = 1 and x = 1 does exist

h(x) =
(e� 1)2
x� 1 + 1; h0 = �

�
h� 1
e� 1

�2
= �

�
e� 1
x� 1

�2

and its graph looks remarkably close to y(x) (Fig 2):
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Fig. 2. The hyperbola (red) passing through the point (e; e) and having the same
asymptotes y = 1 and x = 1 as the function y(x) - the solution of xy = yx

(black).

2.2. The remarkable inequalities. Observe that the de�ning equation xy = yx

may be transformed into the form x1=x = y1=y; therefore let us take a closer look
at the function �(x) = x1=x:
Consider the graph of �(x) on the segment [1;1): This function reaches its

maximum at the point (e; e1=e) ' (2:718; 1:444) - because �0(x) = x 1
x�2(1� lnx)

changes its sign at the point x = e so that �(x) increases on [1; e] and decreases
on [e;1): At that �(1) = 1 and lim

x!1
�(x) = 1:

Function �(x) therefore is comprised of two monotonic pieces: the increasing
�1 : [1; e] ! [1; e1=e] and the decreasing �2 : [e;1) ! [1; e1=e]: Then ��11 � �1
and ��12 � �2 stand for the trivial solution, while ��12 � �1 and ��11 � �2 stand
for the nontrivial y(x):
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Geometrically, the function �(x) generates commuting powers xy = yx in the
following way. Consider any abscissa B to the right of e so that OB = b > e
(Fig. 3) with the corresponding ordinate BC: To the left of e there may be one
and only one equal ordinate AE of the function �(x): The abscissas OA and OB
therefore comprise a solution pair (x; y) for equation (2.1) of commuting powers:
OA = x; OB = y or vice versa.

Fig. 3. Function y(x) (black) outlined by �(x) = x1=x (red) and �(y) = y1=y

(blue).

Lemma 1. y(x) > x1=x:

Proof. The point D on the curve xy = yx corresponds to the abscissa OB and
ordinate OH = OA. At that BC = AE = OG < OH because AE < OA for all
points below the bisectrix. Therefore for any point B of the abscissa to the right
of point e = 2:71:::; BC < BD; which proves the Lemma for points B on the
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interval (e;1): On the segment [1; e] it is true because �(x) increases, while y(x)
decreases, and �(e) = e1=e < e: �

It is worth noting that although xy = yx all along the locus, the actual values
of xy or yx vary: just take a look at the graph of w(x) = xy(x) = (y(x))x (Fig
4):

Fig 4. Non-trivial solution y(x) of the equation xy = yx (in black). Function
w(x) = xy(x) = (y(x))

x (in red).

To determine where is the minimum of w(x); consider

w0(x) = xy(lnx)y0 + yxy�1 = w
�
y0 lnx+

y

x

�
and observe that y0jx=e = �1 so that the w0 changes the sign at this point
(w0jx=y=e = 0). So the minimum value of xy is ee = 15:1542::: reached at the
point x = e:
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It is easy to prove that w(x) has a vertical asymptote x = 1; yet we do not
know yet whether w(x) has an inclined asymptote. Numerical experiments with
w(x) provide a hint that an inclined asymptote w(x) = x possibly exists. Also the
observation over the value w00(x) reveals that (unlike in a hyperbola) w00 changes
its sign from positive to negative between 8 and 9.
The remarkable proximity of the hyperbola h(x) and the curve of commuting

powers y(x) is worse of a closer look.

Lemma 2. y(x) � h(x) in the neighborhood of the point x = e:

Proof. h(e) = y(e) = e; and h0(e) = y0(e) = �1; however h00(e) = 2

e� 1 = 1:1639:::

while y00(e) = 2
5

3e
=
10

3e
= 1:2262:::Therefore h(x) < y(x) in some neighborhood

of the point x = e: �

Conjecture 1. y(x) > h(x) in the intervals (1; e) and (e;1):

We do not know the proof. As it follows from the parametric formula (2.2), with

the notation u = 1+
1

t
; x = ut and y = ut+1. In order to prove the Conjecture,

it is su¢ cient to prove that the function (ut+1�1)(ut�1) never reaches the value
(e� 1)2; or that it is monotonous.
If the inequality y(x) > h(x) is proven, the following interesting inequalities

would follow:

x
(e�1)2
x�1 +1 �

�
(e� 1)2
x� 1 + 1

�x
or

�
(e� 1)2
x� 1 + 1

�
lnx � x ln

�
(e� 1)2
x� 1 + 1

�
:

3. Associating powers

Now consider triplets (x; y; z) of real numbers x; y; z > 0 for which

(3.1) x(y
z) = (xy)

z

or after applying logarithm to both sides of the equation

yz lnx = z lnxy = zy lnx:

The case when lnx = 0 delivers a trivial solution - a set of triplets (1; y; z)
for any y; z > 0: The non-trivial solutions therefore corresponds to lnx 6= 0 so
that we can get rid of the factor lnx obtaining the transcendental equation de�ning
the function y(z) explicitly (unlike the implicit equation (2.1)): yz = yz; or
yz�1 = z; and �nally

(3.2) y = z
1

z�1 (z 6= 1):

The function y(z) is unde�ned at the point z = 1 albeit holomorphic at its
neighborhood.

Theorem 4. The functions y(z) and u(z) = ln y(z) can be holomorphically
extended over the point z = 1:

Proof. Observe that the following limit exists

lim
z!1

u(z) = lim
z!1

ln y(z) = lim
z!1

ln z

z � 1 = lim
z!1

1

z
=1 = 1
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(applying L�Hôpital rule). Therefore u(z) can be continuously extended over the
point z = 1 and therefore, according to the Riemann�s theorem, can be also holo-
morphically extended into this point. Then y(z) = eu(z) can be holomorphically
extended into the point z = 1; and y(1) = e: �

Conclusion 1. The locus of points (x; y; z) for which raising to power is associa-
tive is such that either pairs (y; z) belong to the curve y = z

1
z�1 for an arbitrary

x 6= 1 , or for x = 1 variables y; z are arbitrary.

Now having the complete answer for which set of triplets (x; y; z) powers asso-
ciate, we want to take a closer look at the function y = z

1
z�1 :

The function y(z) satis�es a few other known equations: the non-di¤erential
equation

(3.3) (z � 1) ln y � ln z = 0

is most convenient for applying AD to evaluate the Taylor coe¢ cients. And y(z)
satis�es the di¤erential equations

0 = y0z(z � 1)2 � y(z � 1) + yz ln z; y0 = y
(z � 1)� z ln z
(z � 1)2

0 = y00yz2(z � 1)� (y0)2z2(z � 1) + 2y0yz2 + y2(3.4)

also singular at z = 1. The equation (3.4) yields the value y0jz=1 = �
1

2
yjz=1 = �

e

2
at this point.
It would be ine¢ cient to evaluate the Taylor coe¢ cient by di¤erentiating the

complicated polynomial ODE (3.4). Instead, we di¤erentiate the simple implicit
equation (3.3) applying again the formulas of AD (2.5), as it was done in the
previous section. In so doing we obtain the following recursive formula

(3.5) y[n] =
1

n

n�1X
i=0

y[i]
(�1)n�i(n� i)
(n� i+ 1) ; n > 0:

In particular: y[1]jz=1 = �
e

2
; y[2]jz=1 =

11e

24
; y[3]jz=1 = �

89

72
e:

For this recursive formula (3.5) we also do not know the convoluted solution, nor
can we estimate the convergence radius judging by y[n]. We do know however that
the convergence radius is nonzero because we have proved that y(z) is holomorphic
in the previous Theorem.
Below is the graph of y(z):
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Fig. 5. The function y(z) of the associating powers.

Here are several points satisfying the equation yz = yz or y(z) = z
1

z�1 :
(0:5; 4); (1; e); (2; 2):

4. The conclusion about the special points in the two functions

In [3] we studied a new type of special points in holomorphic functions such

as the point t = 0 in x(t) =
sin t

t
. The specialty of such points is in that

the function x(t) cannot satisfy any regular at t = 0 rational n�order ODE
x(n) = R(t; x; :::; x(n�1)); nor can it satisfy any polynomial ODE x(n) =
P (t; x; :::; x(n�1)): The Taylor coe¢ cients of those functions at the special points
are sequences of particular rational numbers - fractions in smallest terms whose
denominators in�nitely grow and take the values of prime numbers. The method of
proof relied on the fact that for big enough primes in the denominator, the fraction
cannot be cancelled by the other fractions in the sum.
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The Taylor expansions at the special points for both function considered in this
paper do not �t the format required in [3] at least because of presence of e in
all terms. It is possible to get rid of e with an appropriate replacement of the
variables, so that only rational expressions remain in both expansions. Yet even
then we do not know how to identify fractions in smallest terms with growing prime
denominators in those expansions.
Therefore, the issue whether the singular ODEs (2.3) and (3.4) may be replaced

with regular rational ODEs remains open.
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5. Appendix 1

The graphs and ODEs referred in this article can be replayed in a free demo-
version of an advance ODE solver [6] implementing the modern Taylor method for
integration of ODEs. One of many features of this software is that it can start
integration even at a singular point of the ODEs if the solution is regular at this
point and the special Taylor expansion of the solution is provided (from other
sources). Thanks to this feature, the software can deal with the special ODEs
studied here and pre-loaded into the distribution package [6].
After installing the demo-version according to the instructions, go to File/Open

Script menu item, navigate to Samples/SpecPoint folder, and then the following
ODEs are available for playing and further experiments.

(1) Commuting powers in the �le x^y=y^x1.scr . It graphs the ODE (2.3);
(2) Commuting powers in the �le x^y=y^x2.scr . It graphs the cumbersome

ODE (2.4);
(3) Commuting powers in the �le x^y=y^xParam.scr . It graphs the paramet-

ric curve (2.2);
(4) Associating powers in the �le z^(y^x)=(z^y)^x.scr. It graphs the equation

(3.2). The script graphs the curve on the segment [1;1). In order to obtain
the part on the interval (0; 1] press Restart button, set the switch Backward
and integrate pressing button More.

(5) Solution of the ODE y00 = y=x in the script �le x2=xDivt.scr ;
(6) The Bessel functions in the script �les Bessel-0-2.scr, Bessel-1-2.scr,

Bessel-0-3.scr ;

(7) Function
sin t

t
in the script �le sin(t)Divt.scr.

6. References

[1] Lòczi, L. Two centuries of the equations of commutativity and associativity
of exponentiation, Teaching Math. and Comp. Sci., Vol. 1, n. 2�(2003), 219-233
[2] Gofen, A. The ordinary di¤erential equations and automatic di¤erentiation

uni�ed. Complex Variables and Elliptic Equations, Vol. 54, No. 9, September,
(2009), pp. 825-854. (Also here: http://TaylorCenter.org/gofen/Uni�edView.pdf).
[3] Gofen, A, Unremovable �Removable�Singularities, Complex Variables and El-

liptic Equations, Vol. 53, No. 7, (2008), p. 633-642. (Also here: http://TaylorCenter.org/gofen/UnremovSingularity.pdf)

http://TaylorCenter.org/gofen/UnifiedView.pdf
http://TaylorCenter.org/gofen/UnremovSingularity.pdf


14 ALEXANDER GOFEN

[4] Corliss, G., ed,.Automatic Di¤erentiation: Applications, Theory, and Tools.
Lecture Notes in Computational Science and Engineering, (2005), Springer.
[5] Moore, R. E., Interval Analysis, (1966) Prenitce-Hall, Englewood Cli¤s, N.Y.
[6] Gofen, A, http://TaylorCenter.org/gofen/TaylorMethod.htm
E-mail address : galex@ski.org
URL: http://TaylorCenter.org/

http://TaylorCenter.org/gofen/TaylorMethod.htm

	1. Introduction
	2. Commuting powers
	2.1. Evaluation of the formal Taylor expansion at the point (e,e)
	2.2. The remarkable inequalities

	3. Associating powers
	4. The conclusion about the special points in the two functions
	5. Appendix 1
	6. References

