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Abstract We deal here with a complex quadratic ODE with distinct equilibria.
The solution is determined by an integral and Möbius transformations. By ex-
tracting a particular real valued function out of this complex elementary function,
we were able to discover some remarkable properties of the dynamics of the real
trajectory. Namely, with an independent variable t understood as time, it takes the
same time interval to trace every circular orbit or every lap of the spiral trajectory
(independent of the size of the circle or spiral determined by the solution). These
remarkable properties were first discovered by observation of the real time drawing
of such trajectories in an advanced ODE solver called the Taylor Center.

1. INTRODUCTION.

We consider the complex quadratic ODE

(1.1) z′ = Az2 +Bz + C = µ(z − p)(z − q)

when the roots p and q are distinct, and all coefficients are complex. Here the
independent variable w = t + is and z = z(w) = x(t, s) + iy(t, s). The text
by Hirsch, Smale and Devaney [5] has this problem as an exercise, but the authors
probably did not know the properties of this ODE that will be presented in this
article. They wanted the students to analyze the equilibrium solutions which we
do not do in this article, but we do mention what type of equilibium solutions
there are. Using a composition with a Möbius transform ([1]), helped us determine
these properties after a detailed numerical study using the software Taylor Center
[4]. Taylor Center is an ODE software package that can generate high degree
Taylor polynomial approximate solutions to an arbitrary ODE using automatic
differentiation. We detail how the reader can obtain a copy of Taylor Center and
experiment with sample ODEs in Appendix 2. (See Gofen [2, 3] for a description of
automatic differentiation.) All the figures presented here were generated in Taylor
Center. We also discovered that highly accurate numerical solutions are needed to
present correct visualization of the solution to this ODE.

Following the path set in [6], we consider a particular method of a real valued
extraction1 from the complex solution z = z(w) comprised of its components

1The method of extraction of a real valued trajectory used here is a first one that comes to

mind, but only one of infinitely many ways such an extraction may be done. In the independent
variable w = t + is, we set s = 0. However we could choose some parametric curve (t(τ), s(τ)),

or any line in the complex plane to extract other real valued trajectories (x(τ), y(τ)).
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x(t, s) and y(t, s) under the assumption that s ≡ 0 (meaning that the in-
dependent w = t varies along the real axis only). The obtained real trajectory
(x(t), y(t)) satisfies the respective system of real valued ODEs derived from
Equation (1.1)

x′ = P (x, y) = arx
2 − ary

2 − 2 aixy + brx− biy + cr(1.2)

y′ = Q(x, y) = aix
2 − aiy

2 + 2 arxy + bry + bix+ ci

where all of the coefficients are real (the independent variable t′ = 1). The roots
p and q of Equation (1.1) are the equilibria; either both are centers, or one equi-
librium is stable while the other is unstable. The polynomials P,Q have the form
shown, but the coefficients have special properties for the P,Q we will consider
below.

Using these ODEs and the fact about the roots, Sochacki and Lucas [6] studied
several types of real trajectories which happened to be circles or double spirals. An
example is shown in Figure 1. Here we report on recently discovered remarkable
properties exhibited by these trajectories and other trajectories for Equation 1.1.

Namely, with independent variable t understood as time, it takes the same time
interval to trace every circular orbit or every lap of the spiral trajectory (x(t), y(t))
independent of size. This remarkable property was first observed in the real time
drawing of such trajectories in the advanced ODE solver called the Taylor Center [4]
and then shown using this software to be numerically true. Studying and proving
this special kind of periodicity is the goal of this paper.

Observing this phenomenon in animation is possible. However, viewing this
in the phase portrait is not possible and, in fact, not intuitive. If one looks at the
four trajectories with initial conditions (0.1,0),(-0.1,0),(0,0.1) and (0,-0.1) for the
same ODE that generated the solution curve in Figure 1, one sees in Figure 2 that
the laps in the spirals for each of these have significantly varying sizes even though
the initial conditions are relatively close. In Figure 3 the radius of the largest lap
in the black spiral (initial condition (0.1,0)) is 18, the radius of the largest lap in
the blue spiral (initial condition (-0.1,0)) is 80, the radius of the largest lap in the
red spiral (initial condition (0,0.1)) has radius 25, and the radius of the largest lap
in the green spiral (initial condition (0,-0.1)) has radius 10,000 (this largest lap in
the spiral is not shown because of the three orders of magnitude larger than the
other spirals). One would not expect from Figure 3 that all these laps take the
same period to be traced out. Also, unless one uses a highly accurate method like
AD one will not get an accurate representation of the larger laps in these spirals.
We will discuss the ’sensitive dependence on initial conditions’ seen in these two
figures more in Appendix II.

Remark 1. If in Equation (1.1) z = x + yi and w = t + si are chosen with
y = 0, s = 0, and A, B, C are real, then we obtain the real ODE

x′ = Ax2 +Bx+ C

whose solutions are formed from

x = tan(αt+ β),
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Figure 1. A Double spiral with a declined axis as it was first encountered.

x =
x0

1± x0t
,

or

x =
(x0 − r)e2 tr + x0 + r

(r − x0)e2 tr + x0 + r

depending on whether the ODE has no equilibria, one equilibrium or two equilibria.

2. The setting

The general solution z(w) of the ODE (1.1) satisfies the condition

(2.1) µ(p− q) (w + const) = ln
z − p

z − q
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Figure 2. Four initial
double spirals.

Figure 3. The full
solution curves for
Figure 3.

In order to figure out and prove the above mentioned periodicity we will obtain
the explicit formula for z = z(w) from the general solution (2.1) and extract the
real valued parametric representation (x(t), y(t)).

The complex roots p ̸= q of the quadratic polynomial in Equation (1.1) are
stationary points for the solutions of Equations (1.1) and (1.2) meaning that if the
solution is a spiral, it winds around these roots (Figure 4 ). The line connecting
p and q will be referred as the axis of the double spiral, and generally the axis
is declined. We define the laps of the double spiral as the 360◦ pieces of the spiral
cut by this axis.

3. The case

q = i, p = −i
For the purpose of simplicity we are considering only the case when the spiral is

perpendicular to the x axis and, furthermore, p = −i, q = i . (This corresponds to
the complex tangent.) However, all solutions to Equation (1.1) can be found from
magnifications, rotations and/or translations of this case. The general solution with
these roots takes the form

e−2µi(w+c) =
z + i

z − i
(3.1)

(z − i)e−2µi(w+c) − z − i = 0

z = i
e−2µi(w+c) + 1

e−2µi(w+c) − 1
.

Conclusion 1. The subclass of the quadratic ODEs with p = −i, q = i in
the general solution (2.1) is

(3.2) z′ = µ(z2 + 1), z = x+ iy, µ = a+ ib ̸= 0,



5

Figure 4. Spiral Portrait.

and in real coordinates is

x′ = a(x2 − y2 + 1)− 2bxy(3.3)

y′ = b(x2 − y2 + 1) + 2axy.

Denote u = Re(−2µi(w + c)), v = Im(−2µi(w + c), and transform formula
(3.1) into

e−2µi(w+c) + 1

e−2µi(w+c) − 1
=

eu+iv + 1

eu+iv − 1
=

eu(cos v + i sin v) + 1

eu(cos v + i sin v)− 1
=

eu cos v + 1 + ieu sin v

eu cos v − 1 + ieu sin v
=

[(eu cos v + 1) + ieu sin v] [(eu cos v − 1)− ieu sin v]

e2u cos2 v − 2eu cos v + 1 + e2u sin2 v
=

e2u cos2 v − 1 + e2u sin2 v + i(e2u cos v sin v − eu sin v − e2u cos v sin v − eu sin v)

e2u − 2eu cos v + 1

=
e2u − 1− 2ieu sin v

e2u − 2eu cos v + 1

so that

x(t, s) =
2eu sin v

e2u − 2eu cos v + 1
(3.4)

y(t, s) =
e2u − 1

e2u − 2eu cos v + 1
.
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This is a parametric solution for the ODE (3.2).

Conclusion 2. The denominator e2u − 2eu cos v + 1 ≥ 0 because

e2u − 2eu cos v + 1 = (eu − 1)2 + 2eu(1− cos v)

meaning that it reaches zero only when u = 0 and v = 2nπ.

Recalling what u, v, and µ are, we obtain

u(t, s) + iv(t, s) = −2iµ(w + c) = −2i(a+ bi)(t+ cr + i(s+ ci))

= −2i(at+ acr − bs− bci + i(bt+ as+ aci))

= 2(bt+ as+ aci)− 2i(at+ acr − bs− bci)

and with s = 0

u(t) = 2(bt+ aci)(3.5)

v(t) = −2(at+ acr − bci).

As µ = a+ bi ̸= 0 so that a and b cannot both be zero, we have the following
cases

Case 1. (Closed circles) If b = 0, a ̸= 0 so that u = 2aci = const but v(t)
varies, both x(t) and y(t) are periodic (due to periodicity of sin v and cos v in
t), meaning that the trajectory (x(t), y(t)) is a closed curve as shown in Figure 5
in black. Later, we will show this closed curve is a circle. In particular, the zeros of
x(t) are periodic meaning that it takes the same time to trace each circle for every
diameter .

Case 2. (Two Single or one Double spiral) If b ̸= 0 and a ̸= 0 meaning
that both u and v vary, neither x(t) nor y(t)) is periodic and the trajectory is not
closed, but zeros of x(t) are periodic (due to periodicity of sin v in formula (3.4)).
This implies that it does take the same time to trace every lap of the spiral. (This
is what was initially observed in numerical experiments.) This is seen in Figures 4
and 6.

Case 3. (Circular segments) If a = 0, b ̸= 0 meaning that v = bci =
const but u = 2bt varies, both x(t) and y(t) are non-periodic. The curves are
circular segments (this will be shown later) between the points (0,−1) and (0, 1)
excluding the points themselves, which are never reached by the curves. These
circular segments shown in Figure 5 (in red) are gradient lines to the closed circles
of the Case 1 .

We also note that the red curves in Figure 5 represent spirals degenerated into
circular segments bounded by the foci yet never reaching them. This is as the
theory suggests for polynomial systems.

Now we determine the points where the trajectory crosses the y axis in Cases
1, 2.
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Figure 5. CirclePortrait.

Theorem 1. For a ̸= 0 (Cases 1 and 2) the infinite sequence of points where
the circle, or the single or double spiral crosses the y axis is defined by

(3.6) yk =


euk + 1

euk − 1
, k = 2n

euk − 1

euk + 1
, k = 2n+ 1

,

where2

uk =
2(a2 + b2)ci − 2abcr − kbπ

a
, k ∈ Z.

2Generally y2n ̸=
1

y2n+1
.
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Figure 6. Spiral Portrait with Asymptote.

For b = 0 the sequence represents the diametrical points of the circle. Otherwise
for b ̸= 0 this sequence represents spirals: typically one double spiral, unless the
critical value

(3.7) k0 = 2
(a2 + b2)ci − abcr

bπ

happens to be integer and even. Then the sequence represents two disconnected
single spirals having an asymptote. If k0 is an integer but odd, the double spiral
passes through the origin and is comprised of two congruent pieces. Otherwise, the
two pieces of the double spiral are incongruent and the spiral does not pass through
the origin.

Proof. Let a ̸= 0 and v not be a constant in Equation 3.5. With this in
mind, choose the points vk for which sin v = 0, namely

vk = kπ, k ∈ Z.
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The respective tk, uk, according to formula (3.5) are

vk = −2at− 2acr + 2bci = kπ

tk =
2bci − 2acr − kπ

2a

uk = − b

a
kπ − 2bcr +

2(a2 + b2)ci
a

, k ∈ Z.(3.8)

Observe that if b = 0, all uk are the same constant (this is the case of
circles, see Figure 5). Further on we consider the case b ̸= 0.

Depending on the sign of
b

a
, uk monotonically increases or decreases between

−∞ and ∞, changing sign at a certain value k depending on the parameters cr,
ci, a, b. Correspondingly, when uk changes its sign, euk switches from being > 1
or < 1 respectively. Therefore, the values uk comprise a sequence of (generally)

non-integer equidistant values with the period
πb

a
of which only one uk may

happen to pass through 0 for the integer value k = k0 (given in Equation 3.7)
obtainable if expression (3.8) is equated to zero

− b

a
kπ − 2bcr +

2(a2 + b2)ci
a

= 0

and for a given combination of all the parameters cr, ci, a, b fraction (3.7) is
an integer. For example, Equation (3.7) yields an integer if for some integer n the

value cr is chosen such that cr =
2(a2 + b2)ci − nbπ

2ab
.

For every point where sin vk = 0, cos vk = ±1. More specifically, for k = 2n,
cos vk = 1, and for k = 2n+ 1, cos vk = −1. First assume that k0 is not integer
so that for no uk the denominator (euk ± 1)2 reaches zero and the formula (3.4)
yields the following sequences.

When cos vk = −1

yk =
e2uk − 1

e2uk + 2euk + 1
=

(euk − 1)(euk + 1)

(euk + 1)2
=

euk − 1

euk + 1
, k = 2n+ 1

and when cos vk = 1

yk =
e2uk − 1

e2uk − 2euk + 1
=

(euk − 1)(euk + 1)

(euk − 1)2
=

euk + 1

euk − 1
, k = 2n.

Here |y2n+1| < 1 < |y2n| so that all odd y2n+1 ∈ (−1, 1). For the positive part
of the spiral (above the x axis) the odd y coordinates y2n+1 correspond to the
lowest point in laps of the spiral, while the even y coordinates y2n correspond to
the top points in the laps (vice versa for the negative part). Since the values uk

are equidistant and by assumption neither is zero, there are two nearest to 1, the
even points u2n, u2n+2 (1 being in between, but not in the middle as by the
assumption u2n+1 ̸= 0 - see Figure 7).

Therefore, the two largest laps of the spiral (positive and negative) correspond
to these two points, and the larger one of these corresponds to that of the two which
is closer to 1. Thus, with non-integer k0 the parts of the spiral are incongruent.
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Figure 7. The equidistant grid of ...u2n, u2n+1, u2n+2... with 0
between u2n and u2n+2 yet u2n+1 ̸= 0.

If k0 is an integer and odd while 0 is between u2n, u2n+2, then u2n+1 = 0
so that the parts below the x axis and above it are congruent. Note that if a ̸=
0, b ̸= 0, and k0 is not critical then all spirals are double spirals. Points A and
B of the x axis are mapped by the respective spirals onto an infinite sequence of
points onto the y axis. This is seen in Figure 4.

Finally if the critical value k0 is an integer and even (see Figure 6), we have
to establish the existence of particular limits

lim
u→uk0

=±0
x(t) = ∓∞

lim
u→uk0

=±0
y(t) = ±∞

lim
u→uk0

=0

y(t)

x(t)
= − b

a

(we assumed that a ̸= 0 and b ̸= 0). Observe from Equation (3.5) that

v(t) =
2(a2 + b2)ci − 2abcr − au

b

and from Equation (3.7) that

2(a2 + b2)ci − 2abcr
b

= k0π = 2nπ

so that for the critical k0 v = 2nπ − au

b
.

Denoting r =
a

b
̸= 0, we have

sin v = − sin ru

cos v = cos ru.

This allows us to obtain the limits as u → 0 in Equation (3.4). Recall that the
denominator in fraction (3.4) is non-negative so that the sign of both fractions is
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determined by the numerator only. Observe that with u → 0

e2u − 2eu cos ru+ 1 =

= 2 + 2u+
4u2

2!
+

8u3

3!
+ ...− 2(1 + u+

u2

2!
+

u3

3!
+ ...)(1− r2u2

2!
+

r4u4

4!
+ ...) =

= 2 + 2u+
4u2

2!
+

8u3

3!
+ ...

−2

(
1 + u+

u2

2!
+

u3

3!
+ ...− r2u2

2!
− r2u3

2!
− r2u4

2!2!
− r2u5

2!3!
+ ...+

r4u4

4!
+

r4u5

4!
+ ...

)
=

=
4u2

2!
+

8u3

3!
+ ...− 2

(
1− r2

2!
u2 +

(
1

3!
− r2

2!

)
u3 + ...

)
=

=
2− 2r2

2!
u2 +

(
9

3!
− r2

2!

)
u3 + ...

so that the lowest order of u is 2 or higher. At that the numerator

2eu sin v = −2eu sin ru = −2(1 + u+
u2

2!
...)(ru− r3u3

3!
+ ...) =

= −2(ru− r3u3

3!
+ ...+ ru2 − r3u4

3!
+ ...) =

= −2ru− 2ru2 +
2r3u3

3!
+ ...

is of order 1, and the numerator e2u − 1 is of order 1 in u, also. Therefore, with
u → 0 both fractions in Equation (3.4) may be reduced by u leaving us with
nonzero numerators and the denominator approaching 0. This proves the first two
limits.

Finally, with u → 0

lim
u→0

y(u)

x(u)
= lim

u→0

e2u − 1

2eu sin v
= lim

u→0

e2u − 1

2eu sin v
=

= lim
u→0

2u+
4u2

2!
+

8u3

3!
...

−2ru− 2ru2 +
2r3u3

3!
+ ...

= lim
u→0

2 +
4u

2!
+ ...

−2r − 2ru+
2r3u2

3!
+ ...

= −1

r
= − b

a

meaning that the asymptote does exist. □

In Figure 6 we display Case 2 when a ̸= 0, b ̸= 0, and the value of k0 is critical.
One sees that some spirals have degenerated into a single spiral (above and below
the red critical curve) which do not cross the x axis. Those in between the red
curves are double spirals and they do cross the x axis.

We have the following corollary

Corollary 1. (b = 0, u = const) The four points above the x axis corre-
sponding to 0◦, 90◦, 180◦, 270◦, the center, and the radius are, respectively(

2eu

e2u − 1
, 0

)
,

(
0,

eu + 1

eu − 1

)
,

(
− 2eu

e2u − 1
, 0

)
,

(
0,

eu − 1

eu + 1

)
,

(
0,

e2u + 1

e2u − 1

)
,

2eu

e2u − 1
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where the 90◦ and 270◦ locations correspond to cos v = ±1 in Equation (3.4).

Only in this case does y2n =
1

y2n+1
in formula (3.6).

Remark 2. Though the points defined by 90◦ and 270◦ correspond to cos v =
±1, the locations 0◦ and 180◦ on the circle (quite counter-intuitively) do not
correspond to v where cos v = 0 and sin v = ±1 in Equation (3.4). The proof is
given below.

Proof. As it follows from Equations (3.4) and (3.6), the points corresponding
to 90◦ and 270◦ on the y axis correspond to x = 0, or sin v = 0, so that
cos v = ±1 in Equation (3.4). Therefore,

y90◦ =
euk + 1

euk − 1
, y270◦ =

euk − 1

euk + 1
,

the center is

1

2
(y90◦ + y270◦) =

1

2

(
eu − 1

eu + 1
+

eu + 1

eu − 1

)
=

e2u + 1

e2u − 1

and the radius is

R = y90◦ − e2u + 1

e2u − 1
=

eu + 1

eu − 1
− e2u + 1

e2u − 1
=

2eu

e2u − 1
.

Observe that at the points v where cos v = 0 the formula (3.4) yields the value

x =
2eu

e2u + 1
rather than R =

2eu

e2u − 1
as noted in Remark 2. The extreme points

of x = x(v) are not at the v where cos v = 0. We will now determine at which v
it does occur.

With u = const, value x = x(v) reaches its maximum and minimum where
the derivative x′

v changes its sign

x′
v =

(2eu cos v) (e2u − 2eu cos v + 1)− (2eu sin v) (2eu sin v)

e2u − 2eu cos v + 1
= 0,

e2u cos v + cos v − 2e2u = 0

so that the maximum and minimum of x = x(v) are reached when

cos v =
2eu

e2u + 1
and sin v =

e2u − 1

e2u + 1
.

Substituting these values into the Equation (3.4) for x we can see that

2eu sin v

e2u − 2eu cos v + 1
=

2eu
e2u − 1

e2u + 1

e2u − 2eu
2eu

e2u + 1
+ 1

=
2eu(e2u − 1)

e4u + e2u − 4e2u + e2u + 1
=

2eu

e2u − 1

and, thus

x180◦,0◦ = ± 2eu

e2u − 1
= ±R.
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Finally, in the formula (3.6) for circles y2n =
1

y2n+1
because the terms in the

sequence yk take only two values. □

Corollary 2. If a = 0, and v = const then the point of intersection with the
x axis, the center, and the radius of circular segments for the trajectories (Case 3,
Figure 5) are, respectively(

1− cos v

sin v
, 0

)
, −cos v

sin v
,

1

sin v
.

Proof. From Equation (3.4)

y =
e2u − 1

e2u − 2eu cos v + 1
= 0

only when u = 0 so that the point of intersection with the x axis is given by

x0 =
2eu sin v

e2u − 2eu cos v + 1
=

2 sin v

1− 2 cos v + 1
=

sin v

cos v + 1
=

1− cos v

sin v
.

(The sign of x0 depends on the sign of sin v). If c0 denotes the center, and R -
the radius of the circle, then R = |x0 − c0|, and R2 = c20 + 1, so that

c0 =
x2
0 − 1

2x0
=

(
1− cos v

sin v

)2

− 1

2
1− cos v

sin v

= −cos v

sin v

and R =
1

sin v
. □

Corollary 3. For spirals, the parameter b in u(t) in Equation (3.5) and
in eu in Equaiton (3.4) is a measure of steepness of the spiral, or how steeply
its laps wind and tighten around the focus (never reaching it). Thus, b = 0 (Case
1) corresponds to circles and zero steepness. If b is near zero, the value eu

changes slowly within one period so that spiral laps resemble a circle. On the
contrary, if a = 0 (b ̸= 0) the spirals straighten achieving vertical steepness. They
no longer wind around the focus (Case 3). Instead, the curves degenerate into
circular segments bounded by the foci yet never reaching them - just like spirals
never do. Due to the polynomial form of the ODEs, all finite points of the phase
space are regular; the uniqueness of the solution holds at each of these points and
the trajectories never cross each other. The solutions corresponding to the two foci
x ≡ 0, y ≡ ±1 (Figure 5) are stationary.

Corollary 4. Every curve satisfying Equation (3.4) of the double spiral
crosses the x axis at one and only one point where u(t) = 0 meaning the nu-
merator e2u − 1 = 0 in the formula for y. Therefore, every curve of the phase
portrait of the respective ODE (3.2) is uniquely defined by its crossing point with
the x axis. As the ODE (3.2) is polynomial, no finite point of its phase space is
singular, the curves of the phase portrait cannot cross each other, and therefore the
mapping
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(the points of the x axis) ↔ (the curves of the phase portrait)

is bijective as can be seen in Figures 5, 4 , 6.

Corollary 5. Each double spiral crosses the y axis at an infinite number
of places which comprise two sequences that converge to the two respective centers.
The distances between the corresponding points in each sequence approach 0 as
Figure 4 shows.

Corollary 6. Due to the bijective mapping

(the double spirals) ↔ (the points of the x axis),

(a) Every double spiral maps the respective point of the x axis onto the y axis
infinitely many times; (b) The entire ray of the x axis with the vertex at the given
point maps infinitely many times onto the more and more narrow gaps on the y
axis between the respective laps of the spiral. One observes this in Figure 4.

We now go onto Case 3.

Theorem 2. For a ̸= 0, b = 0 (Case 1) or a = 0, b ̸= 0 (Case 3) the
curves are circles or circular segments such that the family of curves of the Case 3
are the respective gradients (perpendiculars) to the curves of the family in the Case
1 (see Figure 5).

Proof. For a ̸= 0, b = 0 the center and the radius of the supposed circle are

respectively c0 =
e2u + 1

e2u − 1
and R =

2eu

e2u − 1
. A straightforward calculation shows

formula (3.4) satisfies the equation

x2 + (y − c0)
2 = R2.

For a = 0, b ̸= 0 the center and the radius of the supposed circle are respectively

c0 =
cos v

sin v
and R =

1

sin v
. Again, a straightforward calculation shows that the

parametric form (3.4) satisfies the equation

(x− c0)
2 + y2 = R2.

The family of curves for a ̸= 0, b = 0 satisfy the ODEs (3.3) and have the
form

x′
1 = a(x2

1 − y21 + 1)

y′1 = 2ax1y1.

The family of curves for a = 0, b ̸= 0 satisfy the ODEs (3.3) and have the form

x′
2 = −2bx2y2

y′2 = b(x2
2 − y22 + 1).

The scalar product at an arbitrary point (x, y) is given by

((x′
1, y′1), (x

′
2, y′2))|(x, y) = (x′

1x
′
2 + y′1y

′
2) |(x, y)

= −2ab(x2 − y2 + 1)xy + 2ab(x2 − y2 + 1)xy = 0.

□
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4. Conclusions

This research is an example of a mathematical study triggered by observation of
numerical experiments at a computer, followed by the conventional mathematical
analysis of the observed phenomenon. Not only did this mathematical analysis
succeed in establishing the proof and explanation for what was observed, but it
also revealed existence of the critical asymptotic curve (Figure 6). This curve
would have been impossible to find by numerical experiment only. The numerical
experimenting and the analytic approaches complemented each other beautifully
in discovering an amazing property of a particular planar polynomial system of
ODEs.

In Appendix 1 we discuss some of the history of this problem. In Appendix 2
we explain to the reader how to obtain and use Taylor Center.

5. Appendix 1: Brief History

As was mentioned in this article, this research was prompted by an example of
a class of planar polynomial IVP ODEs. As outlined in Gofen [2]; Not just planar,
but a large class of ODEs whose right hand sides are general elementary functions
can be made rational, polynomial and then quadratic. Hilbert’s 16th problem is
about polynomial planar ODEs. In fact, polynomial ODEs are more encompassing
than Hilbert knew. Sochacki [7] outlines the properties of polynomial ODEs.

It was an interest in why quadratic ODEs are ubiquitous that led to the study
of ODEs of the form 1.1. It was through numerical experiments that the double
spirals of

x′ = x2 − y2 + 2xy − x− 3.5y + 1, x(0) = 0.1

y′ = −x2 + y2 + 2xy − y + 3.5x− 1, y(0) = 0

were discovered (Figure 1) using Taylor Center. It was then found through numer-
ical experiment that the size of the spirals did not have a direct relationship to the
initial conditions.

Upon studying more classes of the ODEs Lucas and Sochacki [6] discovered
some periodic solutions and periodic properties of these periodic trajectories. In
this article, we presented the theory of more properties of the ODE 1.1 discovered
using Taylor Center. The Taylor Center is an advanced ODE solver and curve
plotter and was indispensable in conducting the research presented here. Indeed,
dynamic drawing of trajectories shows and reveals much more than a still image
does.

6. Appendix 2: Taylor Center Software

The graphs and ODEs referred in this article can be replayed in a free demo-
version of an advanced ODE solver for PCs under Windows implementing the
modern Automatic Differentiation Taylor method for integration of ODEs. One of
many features of this software is that it displays and dynamically plays the motion
along the trajectories in the real time so that the users can observe the effects
reported in this article on their own.
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Follow the instructions on the website [4] for the installation of this software
which comes with the folder of Samples of various problems, and which contains
also the special sub-folder DoubleSpiralStudy of the samples related to this article.
For each ODE and figure presented in this article there is a script file name which
can be navigated. They can be opened in the menu item File/Open script.

When such a script file is successfully opened, it draws the respective trajectory
solution. You may wish to maximize the graph window to see the trajectory in more
details. In order to Play the trajectory in real time, press the Play button. For
the next example, return to the main window and repeat File/Open script menu
item. You can watch other illustrative examples (unrelated to the article) either in
the menu item Demo, or by opening other script files in the folder Samples. (For
viewing 3D stereo examples you will need a pair of Red/Blue glasses).

Below we describe how the reader is able to reproduce the examples discussed
in this article, and to actually watch the dynamic behavior reported there.

When you click Play and watch the real time motion along the trajectory of
the solution, you will notice that it takes the same time to run around every lap
of the spiral whatever the diameter of the lap. It was this remarkable periodicity
which increased our interest in these ODEs.

Using this very software, we accurately computed these time intervals taken
by every lap. We expected to figure out that the intervals are only approximately
equal, yet it appeared that they were equal exactly (with 18 decimal digit accuracy).
This finding begged for further research. Below is the description of how to follow
the research.

Under File/Open Script load the example CircleODEs.scr observing that the
circular laps take the same time to trace independent of the diameter. Verifica-
tion.scr demonstrates a double spiral with general type parameters (a = 0.5, b =
0.05) drawn both parametric and as an ODE solution (only the red curve is visible
because of exact congruence of both solutions). The SteepSpiral.scr represents a
case of a very steep spiral (a = b = 1) in which only one big lap is visible while the
laps winding around the foci are too small to display.

VerificationAsympt.scr and VerificationAsympt1.scr demonstrate the case
when the double spiral broke into two asymptotic pieces.

CircSegment.scr presents the Case 3 of a circular segments when a = 0, b = 1.
With a two monitor system, it is recommended to place the Graph window onto

a separate monitor and keep it maximized for higher resolution of curve drawing.
The main panel (having tabbed pages) allows to inspect the source ODEs, Auxiliary
equations, Initial values, and Constants on the page Equation setting. (See the Help
or the User Manual for more explanations).
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