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Abstract. This article introduces a powerful ODE solver called the Taylor
Center for PCs [1] as a tool for teaching and performing numeric experiments
with ODEs. The Taylor Center is an All-in-One GUI-style application integrat-
ing ODEs by applying the modern Taylor Method (Automatic Di¤erentiation),
and o¤ering powerful dynamic graphics (including 3D stereo vision). After a
brief review of the features of the Taylor Center, we consider instructive ex-
amples of ODEs in various applications and also several particular samples
illustrating intricacies of numeric integration. The article therefore continues
the thesis of Borrelli and Coleman [2] that awareness and caution are needed
while interpreting the results of numeric integration. We o¤er practical ideas
and advice on how to use the Taylor Center for teaching ODEs, and to increase
the motivation and interest of students.

1. Preface

In this article we are dealing with holomorphic1 Ordinary Di¤erential Equations
(ODEs) and their holomorphic solutions in accordance with the Theorem of Cauchy-
Kovalevskaya on existence and uniqueness of the solution.

The goals of the article are:

� To introduce a powerful ODE solver, called the Taylor Center for PCs [1]
as a tool for teaching and numeric experiments with ODEs (Introduction);

� To illustrate its usefulness by demonstration of problems from simple (Sec-
tion 3) to the more advanced (Sections 4-6);

� To show that awareness is always prudent in dealing with and interpre-
tation of computer-generated results (Section 7). In doing this we are
continuing the discussion started by Borrelli and Coleman [2].

2. Introduction

It seems there have been no sophisticated Taylor Solvers designed for PCs
since 1994 (ATOMFT [3, 4]). We expect an application with advanced interactive
visualization to provide:

Key words and phrases. ODE, Automatic di¤erentiation, dynamic graphics, intricacies of
numeric integration, 3D stereo.

1A complex function is called holomorphic in a neighborhood of a point if its Taylor expansion
at this point exists and has nonzero convergence radius.

1

http://www.codee.org/library/articles/pitfalls-and-pluses-in-using-numerical-software-to-solve-differential-equations
http://www.codee.org/library/articles/pitfalls-and-pluses-in-using-numerical-software-to-solve-differential-equations
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� User interface with style, controls, and handlers �t the speci�c model and
operational tasks;

� Realistic visualization of the modeled processes employing all appropriate
faculties of the human perception, achievable with advanced hardware and
multimedia.

With that in mind we introduce a powerful ODE solver the Taylor Center
[5] - an All-in-One system for integration of ODEs by applying the modern Tay-
lor Method (Automatic Di¤erentiation), and o¤ering powerful dynamic graphics
(including 3D stereo vision with conventional monitors and anaglyph Red/Blue
glasses).

The Modern Taylor Method is a descendant of its classical counterpart. It is
an e¢ cient method for numerical integration of the Initial Value Problems (IVP)
for ODEs (presuming that no singularities occur on the integration path). What
distinguishes the Taylor Method from all other numerical methods for ODEs is the
ability to compute the approximation to the solution with principally unlimited
order of approximation (the number of terms in the Taylor expansion). With no
singularities on the integration path, the step does not approach zero regardless
of how high accuracy is speci�ed (presuming the order of approximation may in-
crease to in�nity and the length of mantissa is unlimited). It is the distance to the
singularities which bounds the �nite integration step.

An unlimited order of approximation is possible because the method performs
the Automatic Di¤erentiation (i.e. exact computing of the derivatives up to any
desired order n by optimized formulas for n-order di¤erentiation) providing the
Taylor series of a desired length for the solution components.

Automatic Di¤erentiation is applicable to a subclass of holomorphic ODEs
whose right hand sides are the so called generalized elementary vector-functions.
The generalized elementary functions widen the class of the traditional (Liouville)
elementary functions. The generalization was suggested by R. Moore [6] in the
1960s and further developed by Gofen [7]. Moore de�ned generalized elementary
functions as those that may be represented as solutions of explicit (nonlinear) ODEs
whose right hand sides are rational in all variables. For brevity, we will call them
simply "elementary" functions.

It appears that practically all ODEs used in applications are comprised of
(generalized) elementary functions. At the moment, only the Gamma function and
Gamma integral are proved to be non-elementary [7]. Other candidates suspected
(but not yet proved) to be non-elementary are general solutions of elementary ODEs
as functions of their parameters or of their initial values. However, the solutions of
elementary ODEs as functions of the variable of integration are always elementary
(the theorem of closeness of the class of elementary functions [7]). The composition
of elementary functions and their inverse are elementary too [7]. Therefore, the
subclass of elementary ODEs covers mostly all problems emerging in applications
and courses of Mathematics and Physics taught in universities, making this Taylor
solver widely applicable. In fact, the Taylor Center applies to any normal �rst-
order system whose right hand sides are commonly known analytic functions of the
state variables.

In the most straightforward way this software may be used to illustrate dynam-
ics in every initial value problem taught in universities, and we will point out many
such examples further on. However, the Taylor Center also gives an opportunity
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to explain and demonstrate particularities of numerical integration. In so doing, it
raises the awareness of the students when they interpret the computed numerical
solutions. All the examples discussed in the article or illustrated here with a sta-
tic picture may be run animated via the free demonstration version of the Taylor
Center2 available at the Taylor Center web page [5].

For every illustration in the article, the path via the Main menu�s Demo item,
or the name of the respective script �le for loading via File/Open script is given.
(After the installation, the sub-folder Samples contains all pre-loaded scr �les and
ode �les). In this article, all illustrations on a black background are stereo images
which should be viewed through Red/Blue glasses available here or with the author.
(See Appendix 1 for the complete list of features of the Taylor Center).

3. A powerful tool for dynamic drawing

The Taylor Center is bene�cial whenever drawing of curves is required: planar
�but especially non-planar (viewed in stereo), with the source of the curves being
either an initial value problem for ODEs, or merely parametric equations.

Example 1. Here is the "Wine glass" solution (Fig. 1) for the ODEs of
autocatalitic reaction (from the book of Borrelli and Coleman [8]) graphed as a
planar curve:

2To obtain the license for the full version, the contacts of the author are available under
Help/Registration.

http://TaylorCenter.org/gofen/TaylorCenterDemo.zip
http://www.ski.org/gofen/TaylorMethod.htm
http://www.3dstereo.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=GLA-CRB&Category_Code=GLA&Product_Count=5
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Fig. 1. The "Wine glass solution" (script �le Borrelli.scr)

The corresponding ODEs as loaded in the Taylor Center are:

t = 0
x = 0
y = 0

t0 = 1 3

x0 = exp(�0:002 � t)� 0:08 � x� x � y^2
y0 = 0:08 � x� y + x � y^2

Generally the entry format for an IVP in the Taylor Center is:

Constants Auxiliary variables

Initial values ODEs

3 Generally a trivial equation for the independent variable (like t0 = 1) may be omitted.
However it is necessary in order that dynamic Play be possible. Also, it is necessary if the user
plans switching from one independent variable to another.
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(see the program�s front panel). The names of the variables may be multi-character
identi�ers, and the arithmetic expressions must obey the syntax of Pascal (the
multiplication sign * cannot be omitted).

And here is an example4 of a �eld of direction for the singular ODE

t2x0 + (t� 1)x+ 1 = 0

in the area [�1; 1; 0; 2]:

Fig. 2. Singular ODE t2x0 + (t� 1)x+ 1 = 0 in the area [�1; 1; 0; 2]: The curvy
elements (whose length depend on the heuristic radius) are obtained at points of
regular grid 36� 36; some elements connected. For t = 0 evaluation fails so the

median vertical is missed.

4This example is borrowed from the textbook "The methods of integration of Ordinary
Di¤erential Equations" by N.Matveev.

http://www.ski.org/gofen/FrontPanel.png
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(This is an example of a singular ODE for which evaluation of coe¢ cients an of its
formal Taylor expansion at the point of singularity (0; 1) is possible, but an = n!
so that the convergence radius is zero).

However the Taylor Center is really indispensable for visualizing dynamics.
There is a huge di¤erence between a static picture of a trajectory (say in a book)
vs. the real time animation of the motion along the trajectories in the Taylor
Center. In it not only can the viewer watch the near real time evolution of the
motion, but also observe its acceleration and decelerations, examine the ODEs,
and vary the parameters.

Example 2. Here you can see only the �nal shot of the motion of the double
pendulum described with the ODEs

�001 = �L2fm2 cos(�1 � �2)[L1�012 sin(�1 � �2)� g sin(�2)] + gm sin(�1) +m2L2�
0
2
2 sin(�1 � �2)g

L1L2(m1 +m2 sin
2(�1 � �2)

�002 =
L1fgm[sin(�1) cos(�1 � �2)� sin(�1 � �2)] + sin(�1 � �2)(m2L2 cos(�1 � �2)�022 +mL1�012)g

L1L2(m1 +m2 sin
2(�1 � �2)

Fig. 3. Double pendulum (�le DoublePendulum.scr)

(Run the program to watch the motion).
And here is how the ODEs for the double pendulum look like in the Taylor

Center (the auxiliary variables are displayed �rst - just in order to �t the page):
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Auxiliary variables in the DoublePendulumODEs
y1 = �L1 � cos(Te1)
x1 = L1 � sin(Te1)
y2 = �L2 � cos(Te2) + y1
x2 = L2 � sin(Te2) + x1
Te12 = Te1� Te2
V Te12 = V Te1� V Te2
D = �L1 � L2 � (m1 +m2 � sin(Te12)^2)
D1 = L2 � (m2 � cos(Te12) � (L1 � V Te1^2 � sin(Te12)� g � sin(Te2))+

+g �m � sin(Te1) +m2 � L2 � V Te2^2 � sin(Te12))
D2 = �L1 � (g �m � (sin(Te1) � cos(Te12)� sin(Te2))+

+sin(Te12) � (m2 � L2 � cos(Te12) � V Te2^2 +m � L1 � V Te1^2))

g = 9:8
m1 = 1
m2 = 1
m = m1 +m2
L1 = 1
L2 = 1
Te10 = 1:4
Te20 = �1:4
V Te10 = 0
V Te20 = 0:2

Auxiliary variables

t = 0
Te1 = Te10
Te2 = Te20
V Te1 = V Te10
V Te2 = V Te20

t0 = 1
Te10 = V Te1
Te20 = V Te2
V Te10 = D1=D
V Te20 = D2=D

Example 3. This one and further examples in this chapter are the n-body
problem. Here are ODEs for the planar three body problem (Fig. 4):



8 ALEXANDER GOFEN

i15 = �1:5
m1 = 1
m2 = 1
m3 = 1
x1c = 1
y1c = 0
x2c = cos(120)
y2c = sin(120)
x3c = cos(240)
y3c = sin(240)
vx1c = 0
vy1c = 1
vx2c = cos(210)
vy2c = sin(210)
vx3c = cos(330)
vy3c = sin(330)
k = 0:2

dx12 = x1� x2
dy12 = y1� y2
dx23 = x2� x3
dy23 = y2� y3
dx31 = x3� x1
dy31 = y3� y1
r12 = (dx12^2 + dy12^2)^i15
r23 = (dx23^2 + dy23^2)^i15
r31 = (dx31^2 + dy31^2)^i15

t = 0
x1 = x1c
y1 = y1c
x2 = x2c
y2 = y2c
x3 = x3c
y3 = y3c
vx1 = k � vx1c
vy1 = k � vy1c
vx2 = k � vx2c
vy2 = k � vy2c
vx3 = k � vx3c
vy3 = k � vy3c

t0 = 1
x10 = vx1
y10 = vy1
x20 = vx2
y20 = vy2
x30 = vx3
y30 = vy3
vx10 = m3 � dx31 � r31�m2 � dx12 � r12
vy10 = m3 � dy31 � r31�m2 � dy12 � r12
vx20 = m1 � dx12 � r12�m3 � dx23 � r23
vy20 = m1 � dy12 � r12�m3 � dy23 � r23
vx30 = m2 � dx23 � r23�m1 � dx31 � r31
vy30 = m2 � dy23 � r23�m1 � dy31 � r31

With the Z coordinate and for a greater number n of variables the system gets
much more cumbersome, yet the program generates the system automatically for
the n-body problem.

The program also visualizes variability of the radius of convergence along the
trajectory (the ticks in the progress bar in the lower part of the Fig. 4):
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Fig. 4. The three body Lagrange case. (Demo/3 Bodies/Symmetircal or �le
3Bodies2D.ode)

The direct observation of the dramatic acceleration when the bodies approach
the center of the masses is a perfect illustration when teaching Kepler�s laws. The
program is pre-loaded with a variety of commonly taught classical problems such
as:

� Pendulums (planar in �les Pendulum2D.ode, DoublePendulum.scr, and
non-planar in �les PendulumFlower.scr, PendulumApple.scr);

� Spirals (CornuSpiral.scr, AlgSpiral.ode, IntSpiral.ode);
� Bessel functions (in folder SamplesnSpecPoints);
� Knot curves in 3D (KnotChain3D.scr, TrefoilKnot3D.scr);
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� Great variety of n�body problems under di¤erent conditions, including
the illustration of the Lagrange points (under the Demo menu and in the
folder Samples).

Also, teachers can add samples of their own interest.
Among mathematical tools, the Taylor Center perhaps is unique in employing

stereo vision for displaying non-planar curves. It is always a challenge to draw non-
planar trajectories in the conventional axonometric projection. That is why the
Taylor Center uses the Red/Blue anaglyph stereo as a cheap, yet e¢ cient system of
stereo vision. The curves literally pop up from the screen into the 3D space in front
of the viewer, who can turn them and explore them with a 3D cursor controlled
with the mouse wheel (the respective 3D coordinates being continuously displayed).

Dynamic playing of trajectories is desirable for almost every ODE problem in
mathematics and physics, especially in the celestial mechanics. There are numer-
ous pre-loaded script �les (in the sub-folder Samples) de�ning common mechani-
cal problems such as pendulums to sophisticated examples in celestial mechanics
illustrating the 5 Lagrange (libration) points (Demo/5 Lagrange points or �le La-
grangePoints.scr, to be covered with more details in a future article).

In the Taylor Center, we can see the immediate e¤ect of parameters controlling
the behavior of the solution. In particular, it is instructive to illustrate instability,
for example in the Lagrange solutions of the n�body problem.

A solution of the n�body problem is called the Lagrange case if the n masses
are equal, and in the initial moment:

� The bodies are positioned at the apexes of a regular polygon;
� Their initial velocities are equal in absolute value;
� Their vectors are inclined at the same non-zero angle to the respective
radii.

The initial polygonal formation (de�ned by the properties 1-3) is preserved dur-
ing the motion, in which all the bodies move alone the trajectories of the same
conical type with the center being the center of the polygon (Fig 3).

The instability of the Lagrange case motion (and of the Lagrange points as
well) may be observed in various ways: In failure to numerically integrate it for
big enough number of periods (especially for oblong ellipses), or in sensitivity of
the solution to slight changes in the initial values. Compare Fig. 4 showing the
accurate Lagrange setting, with the disturbed case in a plane (Fig. 5), where all
possible pairs of the three bodies couple randomly in turn (you would appreciate
to watch it as a real time motion):
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Fig. 5. Disturbed Lagrange setting in a plane. (Demo/3 Bodies/Disturbed/2D or
�le 3Bod9995.scr)

Finally, see what happens when the initial setting was disturbed in the direction
perpendicular to the plane pushing the trajectories into 3D space:
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Fig. 6. The three body disturbed into a non-planar motion (Demo/3
bodies/Disturbed/3D or �le 3Body3D.scr)

You can show students the Euler formation (in line) of 3 bodies (�les 3Eq-
BodEuler.scr or 3NonEqBodEuler.scr) and then demonstrate instability of their
motion. Or you can generate the Lagrange setting (circular or elliptic) for the n-
body problem (n may be up to 99, but at a PC of an average power try numbers
not exceeding 20). Here you may explain to the students that the circular Lagrange
motion also exempli�es the simplest case of the Choreography.

A solution of the n�body problem is called a Choreography solution if all the n
bodies move along the same periodic trajectory.

For a long time the circular Lagrange motion was the only known case of
Choreography. It was not until 2000 when a non-circular case of choreography
was discovered [10]: the amazing 8�shape motion of 3 bodies (Demo/Three Bod-
ies/Choreography or �le Simo.scr). Many others have been found since then.

Now ask the students a provocative question if they think the Lagrange case of
n�body motion may be non-planar : Say if 4 equal mass bodies are placed into the

http://www.maia.ub.es/dsg/
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apexes of the regular tetrahedron (or if the n bodies are positioned at the apexes
of the other known regular polyhedra called Platonic bodies). Ask them to suggest
the directions for the initial velocities and to try them in the Taylor Center: for a
tetrahedron, a cube...

(The correct answer is that a non-planar Lagrange motion is impossible - except
the trivial radial collision case, because in 3D space it is impossible to turn a solid
non-planar pencil of rays in such a way, that all the angular increments were equal
- see Appendix 2).

Finally you may ask the students what are their expectations about the possi-
bility for n equal mass bodies each to move along some cyclic near planar orbit so
that all the orbits are reciprocally perpendicular planes in 3D space? Then show
them the remarkable 4 body orbits inscribed into a cube discovered just recently
(by Moore & Nauenberg):

Fig. 7. The 4 body problem, the trajectories inscribed into a cube (Demo/4
bodies/Cube or �le 4BodiesCubic.scr)

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCNDDM000001000004000307000001&idtype=cvips&gifs=yes&ref=no
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In the following sections, we will consider ideas where the Taylor Center pro-
vides an illustration or a helpful hint beyond mere graphing the solutions.

4. ODE as the most straightforward tool for generating the Taylor
expansion of the solution

In this chapter we are going to deal with concepts such as:
� Numeric series, Taylor series and its convergence radius;
� Points of singularity of a function as the boundaries of its Taylor series�
convergence radius;

� Numeric integration of ODEs, the step of integration, its accuracy, and
sources of integration errors.

Typically in numeric methods for integration of ODEs the input is a vector of
initial values and the routine computing the right hand sides of ODEs. The output
is a table of the values of the solution at a grid with a step small enough to satisfy
the accuracy requirements.

Any Taylor solver di¤ers from conventional integrators in that the input �
an IVP � should be provided not simply as a numeric vector and a subroutine
computing the right hand sides, but rather as the arithmetic expressions as such
representing the right hand sides in order to enable automatic di¤erentiation.

Correspondingly, the output and interaction of a Taylor solver with other ap-
plications has its particularity too. The result is not just tabulated values of the
solution, but rather its expansion into the Taylor series (an analytical element), or
a sequence of such elements.

The possibility to expand the solution into the Taylor series presumes that the
solutions and the right-hand sides of the ODEs are holomorphic. So the behavior of
the solution as a real valued function is determined by its properties as a complex
holomorphic function (while the derivatives in all subsequent real valued ODEs in
fact stand for complex di¤erentiation)5. The Taylor expansion at every point is
characterized by its �nite (or in�nite) radius of convergence equal to the distance
to the nearest point of singularity of the solution (usually unknown). Therefore the
Taylor Center operates with the so called heuristic convergence radius re (discussed
below) always displayed during the process of integration, while the expansions
themselves may be viewed at the Debugging page.

Observing the expansion of the solution may be instructive. The Debugging
page of the Taylor Center allows to see the expansion either in numeric form, or as
bar diagrams (if the check box Show Taylor pro�le is checked).

For example, it would be useful to show the students how the expansions di¤er
for the elliptic vs. the circular case of the Lagrange motion. In the elliptic motion
example, stop at the slowest and fastest locations of the trajectories to observe how
the expansions of the solution dramatically di¤er, and so does the re. The applicable

integration step h must always make the fraction k =
h

re
< 1, (by default k = 1

2 ):

5In the de�nition of a derivative of a real valued function at a point, the argument approaches
the point along the real axis.

In the de�nition of a derivative of a complex function at a point, the argument approaches
the point along any path in the complex plane.

Existence of a complex derivative is a much stronger condition than existence of the derivative
on the real axis only. However the elementary functions we deal with have complex derivatives
everywhere (except at a few isolated points of singularity).
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The Taylor center can deal only with �nite partial sums

Sn =
nX
k=0

ak(t� t0)k

of the Taylor series, whose exact convergence radius (given by the Cauchy�Hadamard
formula)

R =
1

sup jakj
1
k

usually is unknown. To obtain the heuristic convergence radius, the program uses
the Cauchy�Hadamard formula [9] based on the available n terms of the Taylor
expansion (by default n = 30). The comparison Table 1 contains the heuristic vs.
exact values of convergence radii for various types of singularities, demonstrating
that the heuristic values reasonably �t the exact radii. (Indeed the examples of
the solutions were chosen such a way that their points of singularities be available
allowing to easily compute the exact convergence radius).

Function Heuristic re Exact R
n = 30 n = 100

1

1� t 0:951 0:984 1

1

(1� t)2 0:803 0:885 1

1

(1� t)3 0:692 0:848 1

1

1� t2 0:971 0:992 1

1

1� t3 0:966 0:991 1

e
1
1�t 0:696 0:798 1p
1� t 1:244 1:110 1

ln(1� t) 1:156 1:058 1

tan t 1:52 1:558
�

2
� 1:57

t

et � 1 5:93 6:133 2� � 6:28
Table 1. Comparison of the heuristic and exact radii in cases of a �nite

convergence radius

You can ask the students now what to expect for solutions which happen to
be entire functions, i.e. those which have an in�nite convergence radius. Will the
program work out the heuristic radius equal to the machine in�nity? Does it mean
that an arbitrarily large step of integration may be practically applied?

In fact, the program does work out nearly "in�nite" heuristic radius for polyno-
mial solutions, or for certain non-polynomial holomorphic functions. For example,
for the system6

x0 = �y7; xjt=0 = 1
y0 = x5; yjt=0 = 0

6Courtesy of Harley Flanders
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(�le y7x5_in_t.ode) the Taylor Center computes re = 2:18 � 101192: (To see it,
you will have to temporarily change the default radius limit from the value 10 to
say 102000).

Now you can demonstrate the student an e¤ect of a violent bell-shape growth of
the Taylor coe¢ cients (or of the Taylor terms at an attempt to apply a big enough
step). In order to do it, enter the trivial ODE t0 = 1 and the function x = e�100t as
an auxiliary variable. Compile it and immediately look into the Debugging page to
see the bell-shape growth of the Taylor coe¢ cients particular to functions having
an in�nite convergence radius.

x = e�100t on [0;+1) is a typical example of such a function. For k =
0; 1; 2; 3; 4; ::: its Taylor coe¢ cients ak = 1; �100; 5000;�16667; 4:16667� 106
violently grow in absolute value reaching the maximum for k = :::114; 115; 116; :::
ak = 3:9315� 1041; �3:41869� 1041; 2:94715� 1041:

Beginning from this number and further on, the coe¢ cients decrease in absolute
value. For example, for k = :::268; 269; 270; :::ak = 1:09019; �0:405277; 0:150103; :::and
for k = :::398; 399; 400; :::ak = 2:49241 � 10�68; �6:24663 � 10�69; 1:561665 �
10�69 they �nally subside.

The same bell shape pattern may be observed not only for the coe¢ cients ak
proper, but also for the terms akhk in the Taylor expansions

X
akh

k of entire
functions.

Remark 1. The Taylor expansion for every (non-polynomial) entire function

x(t0+h) =
1X
k=0

akh
k converges for an arbitrary h, with akhk ! 0 as a consequence.

Yet for any given number k; there exists such a large step h, that the term jakhkj
will exceed any arbitrarily large value.

(This is obvious for any term for which ak 6= 0; and there must be in�nitely
many of them in non-polynomial expansions).

Indeed, the integration step h is a �nite part of the convergence radius R
(whether it is �nite or in�nite). Moreover, R is usually unknown, so only the
available Taylor coe¢ cients allow to determine the applicable integration step h in
order to meet the given error tolerance criteria. The Taylor coe¢ cients allow us to
determine the step via the algorithm elaborating the heuristic convergence radius
re. Table 2 displays values of re obtained for various entire functions.
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Function Heuristic re Exact R
n = 30 n = 100

e�t 5.506 17.4 1
e�10t 0.505 1.746 1
e�100t 0.059 0.171 1
e�1000t 0.0058 0.0174 1
e�10000t 0.00055 0.00170 1
sin t 8.46 32.15 1
sin 10t 0.922 3.223 1
sin 100t 0.0917 0.321 1
sin 1000t 0.0093 0.0314 1
sin 10000t 0.00092 0.00321 1
sin t

t
11.753 34.29 1

Table 2. Comparison of the heuristic radii in cases of an in�nite convergence
radius

Observe: not only are the radii obtained by the program �nite (rather than
being the machine in�nity). They tend to get smaller and smaller for those entire
functions, whose beginning terms in the expansion behave violently showing the bell
shape pattern. Although computed by the Cauchy formula, the heuristic re has
nothing to do with the in�nity of the actual convergence radius. Indeed, if the order
of the method in the program were speci�ed much bigger then the numbers at which
the Taylor coe¢ cients subside to disappearance, the computed heuristic radius re
would approach the machine in�nity. Otherwise, what the program outputs as re
is in fact just a numeric characteristic of the available Taylor coe¢ cients helpful for
elaboration of the integration step to satisfy the speci�ed accuracy.

Although theoretically the series�for entire functions converge for any arbitrar-
ily large step, practically the number of terms required for achieving high accuracy
may be enormous. Also because of the �xed length of the mantissa, the violent
growth of the terms of the series causes the loss of accuracy and the so called
catastrophic subtractive error (explained further).

Fortunately, the algorithm in the Taylor Center works out such a computation-
ally viable heuristic radius for entire functions, that the step splitting in a loop and
recalculations (to reach the required accuracy) happen rarely.

5. Is the highest accuracy in the Taylor method always achievable?

In this chapter we are raising the question of accuracy of numeric methods in
general, and of the numeric ODEs integration in particular. It would be helpful
here to remind the students about the concepts of rounding errors in computation,
and about the absolute and relative error tolerances. The chapter will be focused on
one particular type of error emerging while computing di¤erences of close numbers,
called catastrophic cancellation or subtraction error.

The distinct feature of the Taylor Method is its potential to achieve the highest
accuracy at a given �x length �oat point representation in a particular computer:
the "all-correct-digits" accuracy for the entire integration pass. This potential
derives from (but is not guaranteed by) the following two facts.
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(1) During one �nite step integration the "all-correct-digits" accuracy is achiev-
able because of an arbitrary high order of approximation in the Taylor
method. For the PC the native highest �oat point format is a 63 bit man-
tissa of the 10 byte type extended. However, the 64th and all subsequent
(virtual) digits are assumed zeros being the source of the rounding error.
Therefore even after the very �rst integration step, the "all-correct-digits"
result ends up slightly not on the original trajectory. The 2nd and all sub-
sequent steps will inevitably cause the computed trajectories to slide away
from the exact trajectories de�ned by the previous steps. (Whether this
sliding process goes more and more away from the original trajectories
depends on the property of stability of the given ODEs.)

(2) During multi-step Taylor integration process the �nite number of steps is
minimized because the step size is large. The fewer number of integration
steps �the fewer incidents of sliding from the original trajectory due to
the rounding error. Ideally, to avoid the sliding at all, we would need to
reach the �nal point in one step.

To specify the "all-correct-digits" accuracy in the Taylor Center, the user has
to set the values of the relative error tolerance (for the variables of interest) to
something less than 2�64 or 10�22.

Beside the inevitable rounding error and possibly intrinsic instability of the
ODEs, there is one more e¤ect which may prevent achievement of the "all-correct-
digits" accuracy: it is the catastrophic subtraction (also called cancellation) error.
This e¤ect is particular not only for the Taylor method. It may occur in any
computations with �oat point binary numbers having the formm2n, 2�1 � jmj < 1.

The mantissa m (in the native machine representation proper to the processor)
is usually of a �xed length of 64 bits. (For emulated operations it may be 128
binary digits or something bigger, yet still �xed). The binary exponent n; however,
is allowed to be between �4951 and +4932. To accurately represent a sum of two
numbers having such extreme values of the exponents, the mantissa ought to be
something nearly 10000 binary digits.

Because of the limited length mantissa, in the Intel generic �oat point machine
arithmetic

1 + 10�22 = 1

and

0:1234567890123456789� 0:1234567890123456788 = 0

Therefore, summation of Taylor expansions having violently growing terms may
cause a loss of accuracy, just as a di¤erence of two very close values.

To clarify the concept of catastrophic subtraction error and its fundamental
distinction from the rounding error, consider the following two seemingly similar
expressions for some di¤erentiable function f(x) when h! 0:

Catastrophic subtraction error Rounding error

lim
f(x0 + h)� f(x0)

h
lim

f(x0 + h) + f(x0)

2
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The �rst one inevitably becomes machine zero for small enough h. It therefore
never approaches the derivative f 0(x0) if f 0(x0) 6= 0, and may di¤er from it dra-
matically. The second one always approaches f(x0) and may di¤er from it only in
the 64th binary digit.

In ODEs the catastrophic subtraction error emerges when the integration pass
approaches a point of singularity of the ODEs or some other special points. Such
examples are provided in the Chapter 5 "Tricks and traps of Automatic Di¤erenti-
ation" in the User Manual.

6. Regular solutions of singular ODEs.

This chapter provides a ground for a discussion about points of singularities in
ODEs and their solutions, and the pre-loaded examples (see the User Manual) are
instructive for such a discussion.

First, advise the students about the distinction between points of singularity of
the solution vs. points of singularities of the ODEs as such in their phase space.

For example, the holomorphic function x =
1

1� t , or y = tan t have singularities

respectively at point t = 1 and point t =
�

2
. However, each of them satis�es a

polynomial ODE (x0 = �x2 and y = y2 + 1), whose every �nite point of the phase
space is regular indeed.

And vice versa, the right hand sides of ODEs may happen to be singular at
particular points of the phase space. For example the ODE x0 =

ax

t
is singular

when t = 0. Yet its solution x = ta is regular for any natural (non-negative integer)
parameter a. This solution also happens to satisfy a regular ODE x0 = ata�1.

However, there exist regular solutions (in fact entire functions) which at certain
points can satisfy no explicit polynomial ODE, nor any rational ODE with the

non-zero denominator [7]. For example, such functions are x =
et � 1
t

, x(0) = 1,

or y =
sin t

t
, y(0) = 1, or z = cos

p
t. All the above mentioned functions are

holomorphic at all �nite points. The specialty of the point t = 0 for them is
in that the explicit Taylor method (i.e. the explicit formulas for evaluation of
the derivatives implied by the Taylor method) is not applicable at this special
point. (The elementariness of these functions is possibly violated at this point [7]).
Therefore some other �implicit ODEs and implicit formulas �must be used at such
points, generating the respective Taylor expansions. (For many classical functions
these expansions in the special point are known).

The feature of the recent version of the Taylor Center is that it can integrate
some ODEs even at the points of singularity of these ODEs �providing that the
Taylor expansions in the special points are known from other sources (the above
mentioned samples are pre-loaded and their description provided in the User Man-
ual).

The following chapter may serve as a good illustration to the statement of
Borrelli and Coleman [2]:

"Using a numerical solver to produce an approximate solution of an initial
value problem is not a mindless operation; It is not merely inserting an IVP into a
package solver and out pops a decent approximate solution".

http://www.ski.org/gofen/TaylorUserManual.doc
http://www.ski.org/gofen/TaylorUserManual.doc
http://taylorcenter.org/Gofen/TaylorUserManual.doc
http://taylorcenter.org/Gofen/TaylorUserManual.doc
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7. Weird examples of real valued solutions vs. their complex
properties.

Usually we expect that even simple looking ODEs (polynomial or rational) may
happen to have a solution that is not "simple" at all. The following sample however
exempli�es the opposite situation.

Consider the initial value problem:

x0 = �
p
x; xjt=0 = 1:

In the neighborhood of t = 0; its solution is a polynomial x =
1

4
(t�2)2. Indeed,

the solution itself (as a polynomial) exists and may be continued analytically into
all points of a complex plain, but the right hand side �

p
x of the ODE cannot.

Here the right hand side is deliberately chosen to be the negative branch of the 2-
branched function

p
x. Therefore, this ODE may be satis�ed only by the decreasing

horn of the parabola x =
1

4
(t�2)2 - the example considered in the User Manual to

illustrate various strange e¤ects which may be encountered during a naïve attempt
of integration of such an ODE. (Fig. 8).

Fig. 8. A naïve (and wrong) attempt to integrate x0 = �
p
x (�le strange.ode).

This piecewise curve (instead of a parabola) is an artefact of the program.

The other remarkable example7 is the function x = cos
p
t, also pre-loaded and

integrable in the Taylor Center: both for negative and positive t. Indeed, this
version of the Taylor Center cannot deal with complex variables directly. Observe:
in spite of that

p
t becomes imaginary for t < 0, the cosine of purely imaginary

values is real (and bigger than 1 because cos it = cosh t).
It is worth noting a fundamental fact of automatic di¤erentiation [7], that ODEs

whose right hand sides contain non-rational elementary functions (transcendental
or algebraic) may be equivalently transformed into larger systems of ODEs whose
right hand sides are rational only. The function cos

p
t is elementary (except at

the point t = 0): Hence the problem may be treated as though it has real valued
variables as soon as we �nd a rational ODE satis�ed by this elementary function.

7Courtesy of George Bergman

http://taylorcenter.org/Gofen/TaylorUserManual.doc
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There exists a general way for elimination of non-rational functions in ODEs [7].
In this particular case, di¤erentiate x two times

x0 = � sin
p
t

2
p
t
;

x00 = �
(cos

p
t)
2
p
t

2
p
t
� (sin

p
t)
1p
t

4t
= �x+ 2x

0

4t
;

obtaining the required rational ODE:

x00 = �x+ 2x
0

4t
; xjt=0 = 1; x0jt=0 = �

1

2
:

This ODE still has t = 0 as a point of singularity indeed (because this is the
unremovable or "regular" singularity [7] of the function x(t)). For it the Taylor
expansion at t = 0 is easily available and pre-loaded into the Taylor Center, so
that the program can integrate this ODE and graph the solution in both directions.

Fig. 9. Function x = cos
p
t (�le SpecPointsncos(sqrt(t))-2.ode)

8. Conclusions

The Taylor Center may assist in teaching elementary and advanced ODEs.
Moreover, it helps also in a few other mathematical disciplines such as complex
analysis, general and celestial mechanics, numerical methods, and indeed Automatic
Di¤erentiation (in the frame of the Unifying View [7]).

In the simplest and straightforward way, the Taylor Center helps to teach due
to its sophisticated dynamic graphics. The teachers therefore can immediately
illustrate examples of ODEs and examine the e¤ects of their parameters. From
the very beginning the article o¤ered several such examples occurring in the basic
courses. Indeed, teachers will be able to enter their own examples of interests.

However possible applications of the Taylor Center are not limited only by
the basic ODEs. It helps even more to illustrate various ideas in the advanced
courses, as it was shown in the article. Additionally, it is indispensable for numeric
experiments in research and advanced student projects because of its potential to
achieve the all-correct-digits accuracy in the processes of integration, to obtain the
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roots of the solutions, to explore their convergence radii and expansions, and indeed
to view the real time dynamics.

9. Appendix 1

The full list of features of the Taylor Center
With the current version of the Taylor Center you can:

� Specify and study any Initial Value Problem presented as a system of
explicit �rst order elementary ODEs (the standard format) with numeric
and symbolic constants and parameters;

� Perform numerical integration of IVPs with an arbitrary high accuracy
along a path without singularities, while the step of integration remains
�nite and does not approach zero (presuming the order of approximation
or the number of terms may increase to in�nity, and the length of mantissa
is unlimited);

� Apply an arbitrary high order of approximation (by default 30), and get
the solution in the form of the set of analytical elements - Taylor expan-
sions covering the required domain;

� Study Taylor expansions and the radius of convergence for the solution at
all points of interest up to any high order (the terms in the series must not
exceed the maximum value of about 104932 implied by the Intel processor
generic implementation of the real type extended as10-bytes with 63-bit
mantissa);

� Perform integration either "blindly" (observing only the numerical changes),
or graphically visualized. Perform integration for a given number of steps,
or until an independent variable reaches the terminal value, or until a (for-
mer) dependent variable (now a new independent) reaches a terminal value
(as explained in the next item);

� Switch integration between several states of ODEs de�ning the same tra-
jectory, but with respect to di¤erent independent variables. For example,
it is possible to switch the integration in respect to t to that by x, or by
y to reach the terminal value of a former dependent variable (x, or y). In
particular, if the initial value is nonzero and the terminal value is set to
zero, the root (the zero) of the solution may be obtained directly without
iterations.

� Integrate piecewise-analytical ODEs;
� Specify di¤erent methods to control the accuracy and the step size;
� Specify accuracy for individual components either as an absolute or rela-
tive error tolerance, or both;

� Graph curves (trajectories) in color for any pair of variables of the so-
lution (up to 99) on one screen - either as plane projections, or as 3D
stereo images (for triplets of variables) to be viewed through anaglyphic
(Red/Blue) glasses. The 3D cursor with audio feedback (controlled by a
conventional mouse) enables "tactile" exploration of the curves virtually
"hanging in thin air";

� Play dynamically the near-real time motion along the computed trajecto-
ries either as 2D or 3D stereo animation of moving bullets;

� Graph the �eld of directions - actually the �eld of curvy segments, whose
length is proportional to the radius of convergence.
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� Explore examples such as the problem of Three and Four Bodies supplied
with the package. Symbolic constants and expressions allow parameteriza-
tion of the equations and initial values to try di¤erent initial con�gurations
of special interest.

� Automatically generate ODEs for the classical Newtonian n�body prob-
lem for n up to 99 and then integrate and explore the motion. For n = 99;
there are 298 ODEs, 19404 auxiliary equations, compiled into over 132000
variables and over 130000 AD processor�s instructions: a "heavy duty"
integration!

� Integrate a few special instances of singular ODEs having regular solutions
near the points of the "regular singularities" [7].

In particular, the Demo version of this software comes with numerous instruc-
tive ODEs including the Choreography for the Three Body motion - a �gure eight-
shaped orbit, discovered in 2000 by Chenciner and Montgomery [10]. Users can
"feed" the ODEs of their interest into the Taylor Center, integrate them, draw the
curves, and play the motion in the real-time mode all in the same program. An-
other example describes the four body non-planar trajectories inscribed in a cube
- a recent discovery by Cris Moore and Michael Nauenberg [11].

The Taylor Center is a 32-bit software which runs under both 32- and 64-bit
Windows (up to Windows-7). The executable module is only 1 Mb. As a 32-
bit application, the program can use no more than 4 Gb of available memory for
variables and their expansions - the limit far exceeding any practical needs - see the
memory requirements below. (Now when the new 64-bit Delphi compiler became
available, the project is recompiled into a 64-bit application doing away with this
4 Gb limitation).

The memory consumption depends on the number of variables VarNum (a
function of the number of ODEs and their complexity) and on the speci�ed Order of
approximation. If the expansions are not stored, the program takes 2�V arNum�
Order�10 bytes of memory. If the expansions in P points are stored, it additionally
requires P � V arNum�Order � 10 bytes.

A benchmark for the 10 body planar problem comprised of 41 ODEs, 45+90 =
135 auxiliary equations, parsed into 811 AD instructions, takes 38 s for 10000 steps
of integration (or 3:8 ms per step) at 2:4 GHz Pentium.

Generally for each system of ODEs there exists such a small value of the accu-
racy tolerance, that at this high accuracy the Taylor methods beats any �xed order
method due to the unlimited order of approximation in the Taylor method (this is
known since Moore in 1960s).

10. Appendix 2

Impossibility of the non-planar Lagrange motion
Consider the earlier given de�nition of the Lagrange case for the n-body prob-

lem hypothetically applied to one of the �ve regular polyhedra in 3D. Let call it a
non-planar Lagrange case.

Lemma 1. If a non-planar Lagrange case with the masses at the apexes of a
regular polyhedron is possible, the pencil of rays from the center to the apexes in
this regular polyhedron must be rotatable in such a way that the angular increments
are equal for all the rays.

http://www.maia.ub.es/dsg/
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCNDDM000001000004000307000001&idtype=cvips&gifs=yes&ref=no
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Proof. Absolute values of the initial velocities must be equal and inclined at
the same angle to the radii at all the apexes. Therefore, they must cause equal
angular increments. �

The issue of possibility of a non-planar Lagrange motion therefore relies on a
purely geometric question: whether a solid non-planar pencil of rays is rotatable
preserving all its angular increments (no regularity of the pencil is now assumed).
A planar solid pencil of rays (Fig. 10) is de�nitely rotatable this way in its plane.

α

α

α

α

Fig. 10. A solid pencil of rays in a plane turned at angle �

Now consider an arbitrary non-planar pencil of rays rotating in 3D around the
point of apex. According to Euler�s Theorem, the motion of a rigid body about a
�xed point is equivalent to the rotation of the body about an instantaneous axis of
rotation.

Let this instantaneous axis be OQ (Fig. 11).

Lemma 2. During rotation around an axis of a pencil of rays, a ray with a
bigger angle to the axis has a bigger rotational angular increment.
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Fig. 11. Rotation of a solid bunch of rays in 3D

Proof. Let the ray OA be at angle � to the axis OQ, the OB - at angle �
to the axis, and � > �: Let the pencil of rays turn around the axis at angle 
 so
that \AQA0 = \BQB0 = 
, while CC 0 = BB0. Observe that

CO

CQ
>
AO

AQ

because \OCQ > \OAQ. Therefore
CO

AO
>
CQ

AQ
=
CC 0

AA0

(due to similarity of 4CQC 0 and 4AQA0), and

CC 0

CO
<
AA0

AO

meaning that \BOB0 < \AOA0: �

Conclusion 1. A rotation of a non-planar pencil of rays preserving all the
angular increments in the 3D space is possible if and only if the rays belong to the
surface of a direct circular cone.

Proof. Follows from the Lemma. �

The Conclusion may be also proved in analytical geometry. Denote the rays
as vectors ak , which rotate around an unknown axis x. In order that axis x
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be inclined to each of the vectors ak at the same angle, all the cosines expressed
through the scalar product must be equal to the same unknown value �:

(10.1)
(ak;x)

jakj � jxj
=�:

If � 6= 0; this non-linear system expresses the fact that all vectors ak belong to
a direct circular cone. Otherwise if � = 0; (10.1) means that the axis x must be
perpendicular to all vectors ak , which is possible only if x belongs to a space of
dimension 4 or higher.

Indeed, in no of the Platonian regular polyhedra the pencil of rays from the
center to the apexes of the polyhedra belongs to a direct circular conic surface.
Therefore, there exists no way to orient the vectors of the initial velocity at the
apexes of the regular polyhedra so that the bodies preserve the initial formation
during the motion - unless all these vectors are collinear with the respective radii.
If this is the case, the motion takes place along the radii, and it either ends up with
a collision, or the bodies escape into in�nity.
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