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Inauguració del Curs Lagrange 2013–2014
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The N-Body Problem

Let zj ∈ R2, j = 1, . . . , N the positions of the bodies and mj > 0, j =
1, . . . , N the masses. We shall mainly refer to the planar problem.

Equations of motion under gravitational attraction

z̈j = ΣN
k=1, k 6=jmk∇zjf (rk,j) ,

where rk,j = |zk − zj| and f (r) is the two-body potential equal to 1/r
in the Newtonian case. Later on we shall comment on the strong force
potentials f (r) = 1/(ara), a ≥ 2.

The problem has fist integrals:

1) the center of mass ΣN
k=1mkzk moves on a straight line with constant

velocity. From now on we take ΣN
k=1mkzk = 0,

2) the angular momentum c = Σmkzk ∧ żk,

3) the energy H = K +U , where K = 1
2Σ

N
k=1mk|żk|

2 (kinetic energy)
and U = −Σ1≤k<j≤Nmkmjf (rk,j) (potential energy).

It is also important to use themoment of inertia I(z)=ΣN
k=1mk(zk, zk) .



Solutions

Unless we consider some very special solution only the two-body
problem can be solved explicitly.

The simplest solutions would be fixed points. There are not, but they can
be found if we consider the problem in rotating coordinates.

They give rise to the so called relative equilibrium solutions (res).
The N bodies rotate as if they were a rigid body.

They can be found by requiring z̈j = λzj, j = 1, . . . , N, where λ is a
constant, the same for all j, or as critical points of the potential U re-
stricted to some given level of the moment of inertia: U |I=Mρ2 ,

ρ being the radius of inertia and M = ΣN
k=1mk .

If we consider the case of equal masses mj = 1 , j = 1, . . . , N ,

as we shall do in what follows,

a regular N -gon is a res with all bodies moving periodically on
the same circle. This kind of solution for N = 3 was discovered by
Joseph-Louis Lagrange (Torino 1736-Paris 1813) in 1772. (Born
as Giuseppe Ludovico Lagrangia).



Due to the homogeneity one can scale time and distance so that it
is enough to consider the solutions: a) on a given level of energy h < 0,
or b) on a given level of inertia I = ρ2, or c) with a fixed period.

For most of the talk we shall consider the period fixed: T = 2π.

Then the radius, R, of the circle circumscribed to the N -gon is given by
R = 1

2Ra+1σa,N , where σa,N = ΣN−1
j=1 (2 sin(jπ/N ))−a−1 .

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-2

-1

0

1

2

-2 -1 0 1 2

Note in these examples (N = 3, N = 11) that all the bodies move
periodically on the same circle.



A natural question

Are there other periodic solutions such that all bodies with equal masses
move on the plane along the same path?

Only a few years ago a solution in the Newtonian case with 3 bodies on
the same planar curve, different form a circle, has been proved to exist by
Chenciner and Montgomery (December 1999). Moore found also the same
orbit in a previous numerical work in 1993 in a different context.

This curve is a figure eight curve.
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Sketch of the existence proof

Is based on the minimization of the action functional (see later).
One can take as test path a curve with U constant (equal to the
value of U at the collinear configuration), inside I constant, that one travels
with constant velocity. A strong use is made of the symmetries. It is
checked, analytically, that an optimal choice of I allows to rule out the
possibility of both triple and binary collisions. The proof requires
one piece of numerical information: The evaluation of a definite
integral along some path defined implicitly. See Chenciner–Montgomery for
details.
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Some properties of the figure eight solution with N = 3

a) It passes through all collinear configurations. When 1/12 of a
period is known, from collinear to isosceles, the full curve is obtained by the
symmetries. The angular momentum is zero.

b) I and U are almost constant: I ∈ [1.973, 1.982], minimum at isosceles,
maximum at collinear; U ∈ [2.511, 2.667], minimum at collinear, maximum
at isosceles.

c) The curve is quite close to an affine transformation of a lemniscate. A
fit by a polynomial (in (x, y)) of degree 4 gives errors of the order of 10−4,
and they are of the order of 10−7 when degree 8 is used.

d) The eigenvalues of the monodromy matrix, beyond the trivial ones, are
exp(±2πiνj), ν1 ≈ 0.00842272, ν2 ≈ 0.29809253. Hence, it is linearly
stable.

e) It is possible to obtain an analytical expression of a Poincaré map
around the fixed point, with the coefficients computed numerically. A
routine normal form check gives that the torsion is indefinite. Hence
KAM theorem applies. 3D invariant tori exist around the figure eight.



f) Some “satellites” of the figure eight give also periodic solutions such
that the three bodies are on the same path, but this is not true for all
periodic satellites. (See illustrations).

g) It is possible to continue the figure eight periodic solution to c 6= 0.
It produces a periodic solution in rotating coordinates keeping planar
motion. This produces also solutions (in fixed axes) with the three bodies
on the same curve by choosing suitable values of c.

h) The eight can be continued to all a > 0 (the exponent in the potential)
and even to f (r) = log r and beyond. It is found to be linearly stable only
for (1.228 . . . > a > 0.868 . . .).

i) It is possible to continue the periodic solution to other nearby masses,
each moving then in a slightly different “figure eight”. Stability is only
preserved for relative variations of the order of 10−5.

j) Two more families bifurcate when changing the horizontal compo-
nents of the angular momentum. Along one of them one finds the La-
grange solution traveled twice (Chenciner, Féjoz, Montgomery, Non-
linearity, 2004). That is, there is a family of periodic solutions joining the
eight with the equilateral solution.



A reference
Simó, C.: Dynamical properties of the figure eight solution of the three–body
problem, Contemporary Math. AMS 292, 209–228 (2001).

A “satellite” orbit of the figure eight. Only the fast mode is excited.
Rotation number 11/37. The three bodies travel on the same path.
For reference also the figure eight orbit is shown.

-0.4

0

0.4

-1 -0.5 0 0.5 1



-0.4

0

0.4

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

Left: A “satellite” orbit of the figure eight. Only the fast mode is ex-
cited. Rotation number 8/27. The three bodies travel on different
paths. Only two of them are shown here.

Right: A “relative choreography”. By taking c 6= 0 one finds chore-
ographies in rotating axes (suggested by M. Hénon). After one period
in the rotating frame has rotated δ in a fixed frame. If δ ∈ 2πQ we
get a choreography in the fixed frame. In this case δ = 3

372π.



Beyond N = 3

At the end of 1999 Gerver found a “supereight” solution with N = 4.

It was a simple exercise to find a huge amount of solutions with all the
bodies in the same curve and with quite different shapes of the curves.
Initially, in the Newtonian case. Later on, with different potentials.
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I named them choreographies because of the dancing-like motion of
the bodies seen in animations, as we will see later.

(Rather simple choreographies because they are on the same curve.
k-choreographies should be used for bodies moving on k different
curves).



Two choreographies which differ only by change of scale, rotation,
change of orientation, symmetry, etc, will be seen as the same.

A sample of choreographies for N = 4 is presented. Newtonian case.
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And now some examples with N = 5. Most of them can be seen as linear
chains with loops of different size. Some loops are eventually folded.



Number 1 consists of a large loop and a small one. In the small loop
there are either 1 or 2 bodies for all t.
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Note that for N = 4, 5 no solution with one small inner loop has been
found in the Newtonian case. Next we see some additional examples
and a movie with several choreographies.



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

1)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

2)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

3)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

4)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

5)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

6)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

7)

-1

-0.5

0

0.5

1

-1 0 1 2

8)

-1

-0.5

0

0.5

1

-1 0 1

9)

-1

-0.5

0

0.5

1

-1 0 1

10)

-0.5

0

0.5

-1 0 1

11)

-0.5

0

0.5

-1 0 1

12)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

13)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

14)

-1

-0.5

0

0.5

1

-1 0 1 2

15)

-1

-0.5

0

0.5

1

-1 0 1

16)

-1

-0.5

0

0.5

1

-1 0 1

17)

-1

-0.5

0

0.5

1

-1 0 1

18)



The set up of the problem

We look for 2π–periodic functions q : S1 7→ R2 such that if

zj(t) = q(t− (j − 1)2π/N ) , j = 1, . . . , N,

we find a solution to the equations of motion.

Different approaches:
i) The variational approach: Minimize (or, in general, make extremal)

the action A =
∫ 2π
0 L(t)dt, where L = K − U (the Lagrangian) and

K = K(ż1, . . . , żN ), U = U(z1, . . . , zN ). This is equivalent to minimize∫ 2π/N

0
L(q(t), . . . , q(t+ (N − 1)2π/N ), q̇(t), . . . , q̇(t+ (N − 1)2π/N ))dt .

ii) The flow approach: Look for initial data

z1(0), . . . , zN−1(0), zN (0), ż1(0), . . . , żN−1(0), żN (0)

such that under Φ2π/N , where Φt denotes the time-t flow of the N-body

problem, one obtains z2(0), . . . , zN (0), z1(0), ż2(0), . . . , żN (0), ż1(0).
iii) It is also possible to look for q(t) as the solution of a differential delay
equation.



Some practical comments

For numerical computation of choreographies, both i) and ii) are
used.

Severe difficulties appear in highly unstable periodic orbits or in
orbits passing close to collision.

It is needed to use parallel shooting. It allows to compute periodic orbits
even with dominant eigenvalue of the monodromy matrix larger
than 10100 .

As a general procedure it is very efficient

1) To start a variational approach with strong force potential
(a=2) to have an initial approximation,

2) To refine it by using the flow method solving for zi(0), żi(0), i =
1, . . . , N using Newton method, and

3) To do continuation (using the flow approach) with respect to the ex-
ponent in the potential, trying to reach a = 1, if it is possible.

In 2) it is required to compute the first variational equations and
this gives the stability properties as byproduct.



The functional space

The suitable space where we look for solutions is the Sobolev space
H1(S1,R2) (or H1 for shortness) of functions with square integrable
first derivative.

The difficulties: Problems appear when the solution approaches a collision.

A collision occurs if there exists a double point q(t1)=q(t2), t2−t1 mul-
tiple of 2π/N . Let ∆ ⊂ H1 be the functions associated to collisions.

We would like to see that in each connected component of H1 \∆

(or choreographic class)

there is a solution minimizing the action. Unfortunately, this seems not
to be true for the Newtonian potential. However

Theorem: Consider the case of a strong force potential as
defined above (a ≥ 2). Then in every choreographic class there
is a solution minimizing the action A .

The main reason is that ∀a < 2 the contribution of a collision to A
is bounded while for a ≥ 2 it becomes unbounded.



How many choreographies for N = 3?

Question: whether the number, even for N = 3, is finite or not.
The answer is NOT. It requires a Computer Assisted Proof (CAP)
involving rigorous estimates on the so-called invariant weakly hyper-
bolic manifolds of invariant objects at infinity.

Top: A choreography of the 3-body problem. Bottom: A magnification
of the central part. In each one of the binary portions, the bodies in the
binary make 200 revolutions around their centre of masses.
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