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Abstrat

A \simple horeography" for an N -body problem is a periodi solution in

whih all N masses trae the same urve without olliding. We shall require

all masses to be equal and the phase shift between onseutive bodies to be

onstant. The �rst 3-body horeography for the Newtonian potential, after La-

grange's equilateral solution, was proved to exist by Cheniner and Montgomery

in Deember 1999. In this paper we prove the existene of planarN -body simple

horeographies with arbitrary omplexity and/or symmetry, and any number

N of masses, provided the potential is of strong fore type (behaving like 1=r

a

,

a � 2 as r ! 0). The existene of simple horeographies for the Newtonian

potential is harder to prove, and we fall short of this goal. Instead, we present

the results of a numerial study of the simple Newtonian horeographies, and of

the evolution with respet to a of some simple horeographies generated by the

potentials 1=r

a

, fousing on the fate of some simple horeographies guaranteed

to exist for a � 2 whih disappear as a tends to 1.
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1 Introdution

We will prove the existene of new families of periodi solutions to the N -body

problem. In these solutions all N masses travel along a �xed urve in the plane.

These solutions are topologially interesting, and pleasing to the eye. See the Figures

herein, although it is better to look at animations

1

.

The N -body problem with N equal masses onerns the study of the di�erential

equations

d

2

x

i

dt

2

= r

i

U(x

1

; : : : ; x

N

): (1.1)

Here U(x) = U(x

1

; : : : ; x

N

) is the negative of the potential energy. The vetors

x

i

2 R

d

, i = 1; 2; : : : ; N represent the positions of N masses moving in R

d

. We will

1

Some animations, to be run under linux or unix using gnuplot, are available at

http://www.maia.ub.es/dsg.



only be onerned here with the planar ase, d = 2. We take all the masses to be

equal to 1. We assume that U has the form

U(x) = �

1�i<j�N

f(r

ij

); (1.2)

where r

ij

= jx

i

� x

j

j is the distane between the ith and jth mass and where the

two-body potential f(r) is a smooth non-negative funtion of r > 0 whih blows up

as r tends to 0. The potential is said to be Newtonian when f = =r for some  > 0:

A ollision-free solution for the N -body problem in whih all masses move on the

same planar urve with a onstant phase shift will be alled a simple horeography.

Lagrange [1772℄ found a simple horeography in the ase N = 3, for the Newtonian

potential. The three masses form the verties of an equilateral triangle whih rotates

rigidly within its irumsribing irle. More generally, plae N equal masses on a

irle of radius r, so as to form the verties of a regular N -gon. Rotate this N -gon

rigidly about the enter of the irle with angular veloity !. The resulting urve

will be a solution to the N -body equations. For onreteness, assume the potential

is f(r) = =r

a

;  > o; a > 0: Then the ondition on the radius of the irle is

r!

2

=

a

r

a+1

�

a;N

where �

a;N

= �

N�1

j=1

�

2 sin

j�

N

�

�a

:

We will all this the trivial irular simple horeography.
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Figure 1: Three bodies on the eight. Figure 2: Fives bodies on a 4 petal ower.

In Deember of 1999 two of us (A. C. and R. M. [1999℄) found another simple

horeography for the Newtonian three-body problem. In this new solution three

equal masses travel a �xed �gure eight shaped urve in the plane (see Fig. 1).

This �gure eight started o� a urry of work. Soon afterwards another one of us

(J. G.) wondered whether the irle and �gure eight might be generalized to other

Lissajous{like urves. He soon found initial onditions for N = 4 whih led to a

simple \hain" horeography in the Newtonian ase (see Fig. 3 b). The four masses



form a parallelogram at eah time instant. Then C. S., the fourth member of our

team, found a whole slew of numerial solutions in whih all of the bodies move

on a single urve, and with quite di�erent shapes of urves (see Fig. 3 and 4). He

oined the name \horeography" beause of the dane-like movement of the bodies

in animations. The quali�ation \simple" refers to the fat that all of the bodies lie

on a single urve, \multiple" horeographies being reserved for solutions where the

bodies move on di�erent urves. As this paper deals only with simple horeographies

we shall often skip the word \simple". Hundreds of simple Newtonian horeography

solutions have now been found, the number of \distint" horeographies growing

quikly as a funtion of N . The largest N ahieved so far is N = 799, with the

bodies moving on a �gure eight urve.

When we say \distint", we are ounting only what we all the \main" hore-

ographies, that is those whih are not derived from a given horeography either by

travelling around it a multiple number of times (subharmonis) or by a ontinua-

tion in whih the angular momentum is varied, or even by a ombination of these

two onstrutions. The preise de�nition of \main" and \satellite" horeographies,

together with examples and ounting, will be given in setion 5 .

Conjeture 1.1 For every N � 3 there is a main simple horeography solution for

the equal mass Newtonian N -body problem di�erent from the trivial irular one.

The number of suh `distint' main simple horeographies grows rapidly with N .

We will prove this onjeture, but only after replaing the Newtonian two-body

potential f = 1=r by a strong-fore potential, a suggestion whih goes bak to

Poinar�e [1896℄. For the preise statement, see theorem 2.2 below. We all a poten-

tial strong-fore provided there exist positive onstants ; Æ suh that its two-body

potential f satis�es:

f(r) � =r

2

whenever r < Æ: (1.3)

Imposing the strong fore ondition is a heap way to get around the main obstru-

tion to proving existene of simple horeographies, whih is the existene of �nite

ation ollision solutions. Suh ollision solutions are present in the Newtonian ase,

and indeed for every f(r) = 1=r

a

with a < 2. Our real interest is establishing the

existene of Newtonian horeographies and we will return to this in future papers.

1.1 Literature

The searh for periodi solutions of the N -body problem is more tratable in the

ase of equal masses than in the general ase due to the symmetries of mass in-

terhange. To our knowledge, this observation �rst appears expliitly (but only

in the spatial ase) in the paper by Davies, Truman and Williams [1983℄. Among



other things, these authors were looking for periodi solutions of the equal mass

Newtonian N -body problem in R

3

whose on�gurations were invariant under an

orientation-reversing isometry at eah instant. After reduing by rotations, they

get a two-degrees of freedom system, parameterized by the angular momentum (the

sympleti redution). They look for periodi orbits whose projetion to the redued

phase spae are \brake orbits". A brake orbit is a periodi solution whih traes out

the image of an interval, going bak and forth, `braking' to zero (redued) veloity

and hanging diretion at the endpoints of this interval. In order to give rise to a

periodi solution of the unredued system, the period of the redued (brake) orbit

must be in resonane with the period of rotation of the system. The existene of

suh resonant brake orbits was only established numerially. Periodi solutions of

this kind were redisovered reently at least twie: the \pelotes", found numeri-

ally by Hoynant [1999℄, whih inlude an a priori in�nite set of examples where at

least 4 bodies travel on one and the same spatial urve, and the \Hip-Hop", whose

existene is proved by Cheniner and Venturelli [1999℄ as a ollisionless minimizer

of the ation under the appropriate symmetry onditions. The paper by Davies,

Truman and Williams was the inentive for the systemati study by Stewart [1996℄

of symmetry methods in N -body problems with a non-singular potential.

Another important paper, of whih we beame aware only after our paper was

nearly ompleted, is C. Moore [1993℄. Moore investigates the possibility of realizing

pure braids on N strands by periodi solutions to planar N -body problems. Simple

horeographies orrespond to ertain speial types of braids, hene Moore's paper

has lose relations to ours. His tool is the gradient ow for the ation funtional. He

obtains the result, redisovered by R.M. [1998℄, that for strong-fore potentials any

\tangled" braid type an be realized. He asserts the existene of the �gure eight so-

lution in the Newtonian ase, based on a numerial investigation of the onvergene

of the gradient ow, and he disusses its dynamial stability. He also disusses the

dependene of horeography solutions (and their existene or disappearane) on the

exponent a of f = 1=r

a

, thus presaging the disussion of our setion 6.

Appliations of \the eight" start to appear. Heggie [2000℄ has numerial evidene

that it an appear as an output of the interation of two ouples of binaries.

2 Simple horeographies. The theorem.

We are interested in periodi solutions in whih all N masses travel the same urve

q(t). The period of these solutions is not important to us. Our proofs work for any

period. Furthermore, in the homogeneous potential ase, saling allows to obtain

any desired period. At this point it is onvenient for us to take this period to be N .

Thus we are searhing for solutions to the N -body problem whih have the form



x

j

(t) = q(t+ j); j = 0; : : : ; N � 1 (2.1)

with q(t) = q(t+N) (see Cheniner-Montgomery [2000℄ after renumbering).

We will say that a urve has a ollision if q(t) = q(t + i) for some time t, and

some integer i, i = 1; : : : N � 1. We want solutions without ollisions. With this

in mind, let C = C

0

(S

1

; C ) be the set of all ontinuous urves q : S

1

= R=NZ ! C

endowed with the usual C

0

-topology. De�ne the disriminant lous D � C to be the

set of all those urves along whih there is some ollision.

De�nition 2.1 A simple horeography lass is a omponent of C n D.

The main theoretial result of this paper is :

Theorem 2.2 Given any simple horeography lass, there is a periodi solution of

any planar strong-fore N -body problem (see equation (1.3)) whih realizes this lass.

Compare with Moore [1993℄ and Montgomery [1998℄ in whih an analogous result

is established for any braid lass.

Examples of simple horeographies are given by the Figures in this paper. Most

of these are for Newton's (non-strong fore) potential. In Sim�o [2000℄ several other

families are displayed. In setion 5 it is proved that the number of \main" simple

horeographies inreases at least exponentially with N .

2.1 An alternative desription

It is illuminating to have another desription of simple horeographies (see Cheniner

[2000℄). The on�guration spae for the planar N -body problem is C

N

. Think of

S

1

= R=NZ as a irle of irumferene N , drawn in the plane. Insribe within

this S

1

a regular N -gon, with verties labelled in yli order and vertex 0 on the

positive x-axis. The image of vertex j under a map x : S

1

! C

N

n� is to represent

the initial position x

j

(0) of mass j, j = 0; 1; : : : N � 1. As the N -gon rotates

rigidly within the irle, these image points move, thus sweeping out a urve in

C

N

. Now the group Z

N

ats on S

1

by rotations, taking our standard N -gon to

itself, with the standard generator  of the group ating on a point t 2 S

1

by

t 7!  Æ t = t + 1. This same generator ats on C

N

by permuting the masses:

x = (x

0

; : : : ; x

N�1

) 7!  Æ x = (x

1

; : : : ; x

N�1

; x

0

).

Now we make a ruial observation. A map x : S

1

! C

N

is equivariant with

respet to this Z

N

ation, i.e. x( Æ t) =  Æ x(t), if and only if x

j

(t) = x

0

(t+ j). In

other words, the Z

N

-equivariant maps into C

N

orrespond preisely to losed urves

q : S

1

! C in the plane, with the orrespondene being given by the equation (2.1)

above. This de�nes a natural orrespondene C := C

0

(S

1

; C ) $ C

0

(S

1

; C

N

)

Z

N

,



where the subsript Z

N

denotes equivariane with respet to that group. Moreover,

a urve is ollision-free in our original sense if and only if its orresponding urve

in C

0

(S

1

; C

N

)

Z

N

has no ollisions, i.e., no points with x

i

= x

j

for i 6= j; i; j =

0; : : : N � 1. This establishes a natural orrespondene between the spae of loops

C n D of the beginning and the spae C

0

(S

1

; C

N

n�)

Z

N

where � � C

N

is the set of

all possible ollisions between any distint masses. (� is sometimes alled the \fat

diagonal".) Thus a simple horeography lass is the same as a omponent of the

spae C

0

(S

1

; C

N

n�)

Z

N

of ollision-free equivariant loops in on�guration spae.

2.2 Remark on imposing additional symmetries

Various other groups at on S

1

and on C

N

. By imposing these as additional symme-

tries we an obtain beautiful symmetri patterns for our N -body horeography solu-

tions. Fix a �nite group � ontaining Z

N

, and ating on both S

1

and on C

N

in suh

a way that it preserves the Lagrangian, and suh that the restrition of the ation

to Z

N

agrees with the previously de�ned ation of Z

N

. Replae C

0

(S

1

; C

N

n�)

Z

N

by C

0

(S

1

; C

N

n�)

�

� C

0

(S

1

; C

N

n�)

Z

N

, the spae of �-equivariant loops. Then the

de�nition of horeography lasses extends to yield that of equivariant horeography

lasses, and our main theorem still holds in the equivariant ase.

The groups � we have in mind are yli (Z

Nm

) or dihedral (D

Nm

) extensions

of Z

N

, or produts of these by a subgroup of O(2). Reall that the dihedral group

D

k

, the symmetry group of a regular k-gon, is a non trivial extension of Z

k

by Z

2

whih admits the presentation fs; �js

k

= 1; �

2

= 1; �s� = s

�1

g. This group may be

put, usually in several ways, in the form of a semi-diret produt. For example, D

6

is a semi-diret produt of Z

3

by Z

2

�Z

2

, D

12

is a semi-diret produt of Z

4

by D

3

,

et.

We need to de�ne their ations. We shall take always the ation of D

k

on S

1

(of

length N), de�ned by s � t = t+N=k; � � t = �t; but we may de�ne di�erent

ations on C

N

. The only ondition will be that the restrition of the ation to the

normal subgroup Z

N

(generated by s

m

) be the one de�ned in 2.1, that is

s

m

� (x

0

; x

1

; � � � ; x

N�1

) = (x

1

; x

2

; � � � ; x

0

):

Let us take for example N = 3 and � = D

6

. As a �rst ation of D

6

on C

3

we de�ne

s � (x

0

; x

1

; x

2

) = (�x

2

;�x

0

;�x

1

); � � (x

0

; x

1

; x

2

) = (x

0

; x

2

; x

1

):

For the seond one, we take

s � (x

0

; x

1

; x

2

) = (�x

2

;�x

0

;�x

1

); � � (x

0

; x

1

; x

2

) = (�x

0

;�x

2

;�x

1

):

An example of an equivariant loop for the �rst ation of D

6

is the Lagrange

equilateral solution where the three bodies hase eah other around a irle, x

0



being at time 0 on the positive intersetion of the irle with the horizontal (= real)

axis. An example of an equivariant loop for the seond ation is the eight with x

0

being at the origin when t = 0: Note that, on the ontrary, the supereight with four

bodies (Fig. 3 b) shares equivariane under some ation of the group D

4

� Z

2

on

C

4

, with the relative equilibrium solution where the four bodies form a rigid square

and hase eah other around a irle. (These two represent di�erent topologial, or

horeography lasses, however).

Planar horeographies whih enjoy k-fold dihedral symmetry have the pattern of

owers with k petals (see Fig. 2, 3  and 4 e), or, when the petals overlap tightly, they

look like pitures drawn by a hildren's drawing toy, the spirograph. We leave to the

reader the de�nition and representation of the orresponding groups � (in the ase

of Fig. 3 , for example, the group is D

12

, see Cheniner [2000℄ for more details).

3 Proof

Exept for the (fundamental) symmetry onsiderations, the following proof is essen-

tially due to Poinar�e [1896℄, with the following unimportant di�erenes: Poinar�e

was working with homology instead of homotopy and looked for periodi orbits in

a rotating frame.

We use the diret method of the alulus of variations (see Montgomery [2000℄

for more details). The ation for our N -body problem is given by

A(x) =

Z

T

0

[

1

2

K( _x(t)) + U(x(t))℄dt; (3.1)

where T =N , K( _x)=�

N�1

i=0

j _x

i

j

2

and U(x)=�

1�i<j�N

f(jx

i

�x

j

j), with f as in (1.3).

If U(x) � 0, whih we heneforth assume, and if the ation of the urve x is �nite,

then the derivative _x is square integrable, whih is to say that it lies in the Sobolev

spae x 2 H

1

(S

1

; C

N

). If x is a ritial point of A, and if x has no ollisions, then x is

a N -periodi solution to (1.1). This is a basi, well-known result in mehanis and in

the alulus of variations. Collisions have to be exluded beause (1.1) breaks down

at ollisions, and beause the ation is not di�erentiable at paths with ollisions,

despite some potentials (e.g., the Newtonian one) being regularizable.

Aording to \the priniple of symmetri ritiality" (see for example Palais

[1979℄) this same statement holds for �-equivariant paths. More preisely, let � be

any �nite group ating on both S

1

and on C

N

by isometries in suh a way that it

preserves the potential U . Then � preserves the Lagrangian and hene leaves the

ation unhanged: A(x) = A(g Æ x), for g 2 �. Let H

1

(S

1

; C

N

)

�

� H

1

(S

1

; C

N

)

be the set of all equivariant paths with square-integrable derivative. Suppose that

x is ollision-free, and that dA(x)(v) = 0 for all v 2 H

1

(S

1

; C

N

)

�

. Then x is a



solution to (1.1). The proof proeeds by using reduibility of �-representations to

show that dA(x)(v) = 0 for all v 2 H

1

(S

1

; C

N

)

�

implies that dA(x)(v) = 0 for

all v 2 H

1

(S

1

; C

N

), and that x is a ritial point within the bigger loop spae

H

1

(S

1

; C

N

) (a diret proof is given in Cheniner [2000℄).

Reall H

1

(S

1

; C

N

) � C

0

(S

1

; C

N

). This is one of the simplest instanes of the

Sobolev inequalities. The diret method proeeds by �xing a horeography �, that

is to say a omponent of C

0

(S

1

; C

N

)

�

, interseting � with the subspae of H

1

-

paths, and then taking the in�mum of the ation A(x) over all paths x realizing this

horeography. By slight abuse of notation we will use the same symbol � to denote

the intersetion of the lass � with the spae of H

1

-paths. Set:

a(�) = inf

x2�

A(x): (3.2)

Then, by de�nition of in�mum, there is a sequene x

n

2 � � H

1

(S

1

; C

N

n�)

�

with

A(x

n

) ! a(�). The idea is to show that x

n

onverges to a solution to (1.1), and

this solution lies in the interior of �.

The Sobolev inequality jx(t) � x(s)j �

q

R

j _xj

2

dt

p

jt� sj shows that the set of

all H

1

paths with ation A bounded by a �xed onstant forms an equiontinuous

family. This same argument shows that the length ` of any path x 2 C is less than

p

2A(x). Without loss of generality we may take the enter of mass of eah of our

paths x

n

to be identially zero:

�

j

x(t+ j) = 0: (3.3)

An easy argument now shows that the set of all paths in C with enter of mass at the

origin, and with bounded length, is a pointwise bounded family. The Arzel�a-Asoli

theorem asserts that any bounded, equiontinuous family of paths in C ontains a

onvergent subsequene. So without loss of generality, we have the existene of a

urve x

�

suh that x

n

! x

�

in the C

0

-norm.

The rux of the matter is to show that this C

0

limit x

�

is ollision-free, or

what is the same thing, that minimizing sequenes annot tend to the boundary

of a omponent �. If so, this limit is automatially in �. Fatou's lemma A(x

�

) �

lim

n

A(x

n

) then shows that x

�

is a minimizer, and hene a ritial point for the ation

restrited to �-equivariant loops. The priniple of symmetri ritiality applies,

yielding that x

�

is a solution realizing the given horeography. That x

�

is ollision-

free follows diretly from

Proposition 3.1 If U is a strong-fore potential, then any path with ollision has

in�nite ation.

Proof. Suppose the path x su�ers a ollision, with masses i and j olliding at time

t



. Write r for r

ij

. The kineti term K in the ation satis�es K � _r

2

. Sine x is



ontinuous, we have r < Æ for some time interval jt � t



j � � about the ollision

time. The strong fore assumption yields U � =r

2

over this interval. Thus the

Lagrangian satis�es L =

1

2

K + U �

1

2

_r

2

+ =r

2

. Using a

2

+ b

2

� 2ab we have that

L �

p

2j

_r

r

j for jtj � �. But j

R

t

2

t

1

_r

r

dtj = j log r(t

2

) � log r(t

1

)j, and r(t



) = 0. From

this we onlude that the partial ation

R

t



+�

t

Ldt diverges at least logarithmially

as t! t



from above, and so the ation of the ollision path is in�nite. QED

Remark. This proposition is proved in Poinar�e [1896℄ under the stronger as-

sumption of (almost) onservation of energy. More preisely, Poinar�e makes use

of the fat that at ollision, kineti and potential energy are of the same order of

magnitude.

4 Numerial investigations

We onentrate on the Newtonian potential. Easier ases (strong-fore 1=r

a

; a � 2)

and harder ases ( 1=r

a

; 0<a<1) of homogeneous potentials have also been suess-

fully searhed for simple horeographies (see setion 6). Exept in that setion all

Figures presented here are of Newtonian solutions. Note, also, that a natural ontin-

uation to the logarithmi potential, f(r) = � log r; is possible and it is better done

by using f(r) = 1=(ar

a

) instead of f(r) = 1=r

a

for small positive a, but we shall not

report on these results here. All the Figures in the paper represent solutions with

period T = 2�. From now on we set S

1

= R=2�Z and we shall use S

1

N

for R=NZ:
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Figure 3: Simple horeographies for four bodies under the Newtonian potential.



For N = 3 only Lagrange's equilateral solution, the eight and some satellites of

the eight (see setion 5) are known. From now on we skip the trivial irular ase in

whih the N masses form a regular N -gon whih rotates within its irumsribing

irle. Figure 3 presents some simple horeographies for four bodies. The positions

of the bodies at some initial time are displayed. The values of the ations are

shown. Compare with the ation for the irle horeography, A = 36:613230: Several

examples with N = 5 an be found in Sim�o [2000℄.

In Fig. 4 we display some simple horeographies for several values of N: They

show just a few of the types found. We refer to Sim�o [2000℄ for additional families.
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Figure 4: A sample of di�erent kinds of simple horeographies for the Newtonian potential.

For the numerial omputation of simple horeographies, two methods have been

used: minimization and Newton's method.

4.1 Minimization methods

These proeed by searhing for loal minima of A. In general we annot ensure that

the value of the minimum found is a(�), see (3.2). We represent a urve q whose

omponents in R

2

are denoted as (u; v), by an approximation q̂ = (û; v̂) with

û(t) = �

M

k=1

a

k

os(kt) + b

k

sin(kt); v̂(t) = �

M

k=1



k

os(kt) + d

k

sin(kt): (4.1)

At time t the bodies are loated in q(t+ 2�j=N); j = 0; : : : ; N � 1; with veloities

_q(t+2�j=N): These values are substituted in (3.1). The integral

R

S

1

L(q̂(t); dq̂=dt)dt



is omputed using a trapezoid rule with time step 2�=n; where n is a multiple of

the number of bodies, n = pN; p 2 N: Only the values for t = t

j

= 2�j=n; j =

0; : : : ; p� 1 are needed, beause after 2�=N eah body is shifted to the position of the

next one. The approximate value of the ation

^

A depends on P = fa

k

; b

k

; 

k

; d

k

; k =

1; : : : ;Mg through (4.1). Beause of (3.3), with j replaed by 2�=N; all the oeÆ-

ients with N jk must be zero. By imposing symmetries on a horeography we an

further derease the ardinality of P: Collision-free solutions are analyti and the

use of the trapezoid rule is suitable.

In this way we obtain a disretized funtional

^

A(P ): It is minimized by using the

gradient method and variants. Several pratial problems appear: a) The ation is

quite \at" and lots of loal minima seem to exist. b) In ase we look for a solution

having a passage lose to ollision, the number of harmonis should be large, of the

order of several thousands. Both problems slow down the minimization.

Typially the omputations have been stopped when two onseutive estimates

of

^

A, all of them being loal minima along a searh line, di�er by less than 10

�10

:

We started with any arbitrary set P or with data obtained after smoothing and

�ltering a hand drawn urve. As a test of goodness we have used the onservation

of the energy and the residual aeleration: the di�erene between the value given

by (1.1) and by using

d

2

dt

2

q̂ at the times t = t

j

:

4.2 Newton's method

Let �

2�=N

be the ow of (1.1) for a time interval 2�=N . Starting with given values

of positions and veloities at t = 0; x

j

; _x

j

; j = 0; : : : ; N � 1; the transport by �

2�=N

should give the same values, with the indies shifted ylially by one unit. This

gives a set of 4N salar equations, whih is solved by Newton method starting

at an approximate solution found by minimization. The map �

2�=N

is omputed

by numerial integration of (1.1). The simultaneous integration of the variational

equations is also needed. In most of the ases parallel shooting (see, e.g., Stoer-

Bulirsh [1983℄) has been required, espeially if passages lose to ollision our.

Typially Newton iterations are stopped when the \losing error" is below 10

�12

:

As a byprodut, linear stability properties have been obtained. Note that these 4N

equations are not independent. Use has been made of (3.3) and the rotation and

time shift invariane to derease by 6 the dimension of the system to be solved.

The only horeography found to be linearly stable, up to now, for the Newtonian

potential is the eight (again, see setion 5). Furthermore, on the manifold of angular

momentum zero, where the eight lives, the hypothesis of the KAM theorem has been

heked to hold by a numerial omputation of the torsion (see Sim�o (2) [2000℄).



5 Main horeographies, satellites and linear hains

5.1 On main and satellite horeographies

As we announed in the Introdution, starting with one horeography, we show

how to onstrut, under some hypotheses, a family of new horeographies, by either

travelling around the initial horeography a multiple number of times, or by a on-

tinuation in whih the angular momentum is varied, or by a ombination of these

two onstrutions.

This suggests distinguishing between main and satellite horeographies, as we

have done preeding onjeture 1.1. in the �rst setion: a main horeography is one

whih is not the satellite of another one.

5.1.1 Subharmonis

Let us start with a desription of the Poinar�e map in the neighborhood of an N -

periodi horeography x(t) = (q(t); q(t + 1); � � � ; q(t + N � 1)). Reall (subsetion

2.1) that the solution x(t) is haraterized by the fat that 8t; x(t+1) = Sx(t);

where S : C

N

! C

N

is the isometry of the on�guration spae de�ned by

S(x

0

; x

1

; � � � ; x

N�1

) = (x

1

; � � � ; x

N�1

; x

0

):

This fat has been strongly used in the numerial methods of the previous setion.

Let us �x the energy and the angular momentum to the value they have for our

solution. After redution of the translational and rotational symmetries, we get a

(4N�7)-dimensional manifold (ounting the dimension over R) on whih S operates

naturally. Let us all �

0

a piee of (4N � 8)-dimensional submanifold transverse to

the periodi orbit at a point (x(t

0

); _x(t

0

)). Let �

1

; � � � ;�

N�1

be the images of �

0

by

S; � � � ; S

N�1

. These submanifolds are transverse to the periodi orbit at the points

(x(t

0

+ 1); _x(t

0

+ 1)); � � � ; (x(t

0

+N � 1); _x(t

0

+N � 1));

respetively. Let P

i

: �

i

! �

i+1

; i = 0; � � � ; N � 1; be the Poinar�e maps (of

ourse, �

N

= �

0

). One veri�es readily that S Æ P

i

= P

i+1

Æ S, where S is extended

diagonally to C

N

� C

N

. Let us de�ne P : �

0

! �

0

by the formula P = S

�1

Æ P

0

.

One dedues from the above and from the fat that S

N

= Id, that the �rst return

map P = P

N�1

Æ � � � Æ P

1

Æ P

0

to �

0

is equal to P

N

. This is what haraterizes the

�rst return maps along horeographies: they admit an N -th root (whih is nothing

but the return map to the orresponding setion in the quotient by S, whih ats

freely in the neighborhood of a horeography).

Now, for any horeography of N bodies, a subharmoni solution gives rise to

a horeography eah time it orresponds to a periodi point, say of order k, of



P =

N

p

P, the Poinar�e map of the quotient by S. This is beause, lifted to the phase

spae, suh a subharmoni will give rise to a horeography ~x(t) � x(t); t 2 [0;

~

T ℄,

of period

~

T � kN (if we hose the period T of x(t) to be equal to N), preisely

~x(t+

~

T=N) = S

k

~x(t), as long as (k;N) = 1. This is beause

1) if (k;N) = 1, N is a generator of Z=kZ, so that all the inverse images of the

periodi solution of P under quotient by S belong to the same periodi orbit;

2) the time spent by this orbit to go from �

i

to �

i+1

is independent of i beause

the vetor �eld ommutes with S.

5.1.2 Relative horeographies

Another possibility is to hange the angular momentum level. Call a solution of (1.1)

of the form x(t) = (q(t); q(t+1); : : : ; q(t+N � 1)) a relative simple horeography of

period N if there is a rotation R

�

of �xed angle �, suh that, for all t,

q(t+N) = R

�

q(t):

In a rotating frame with angular veloity �=N , it beomes an honest horeography.

If the angle of this rotation is a rational multiple m=d of 2� then x is periodi with

period T = dN and

X(t) = (q(t); q(t+ d); : : : ; q(t+ (N � 1)d))

is a horeography (in the �xed frame) provided there are no ollisions, that is if d

and N are mutually prime.

Otherwise, the solution is quasiperiodi. If the Poinar�e return map of an initial

horeography q

0

is nondegenerate, and if that horeography has angular momentum

C

0

, then aording to the impliit funtion theorem there will exist a family of

relative simple horeographies near q

0

with angular momentum C taking any value

within an interval about C

0

. Most of these will be quasiperiodi, but a dense set

will have rational rotational angle.

5.1.3 Satellites of the eight

Let us desribe now some basi fats regarding the dynamis near the �gure eight

horeography (see Sim�o (2) [2000℄). We shall show that it has many \satellite"

horeographies. Indeed:

As a �xed point of the above Poinar�e map P (with �xed energy and zero angular

momentum), the �gure eight orbit is totally ellipti with torsion: the frequenies do

hange loally when one gets away from the �xed point. Hene there exists a family

of periodi points (subharmonis) parameterized by a rational rotation vetor, whose



omponents tend to limit values given by the eigenvalues of the Poinar�e map P,

approximately 0:00842272 and 0:29809253, when we approah the �xed point.

As, for the eight solution, P =

3

p

P is also totally ellipti, this implies the

existene of a family of horeographies aumulating to the eight. In turn, some of

these horeographies are totally ellipti and the same argument is likely to apply

inde�nitely, giving also rise to horeographi solenoids.
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Figure 5: Several examples of satellite orbits, the top and bottom ones being

horeographies, but not the middle one. See the text for explanation.

The �gure eight periodi solution an also be ontinued to di�erent angular

momenta. As we saw, a possible way to proeed is to use a rotating frame with



angular veloity !. As �rst found by H�enon [2000℄, the periodi orbit beomes a

distorted �gure eight, with the three bodies travelling on the same path in rotating

oordinates. For that purpose H�enon used the same program he had been using in

H�enon [1976℄ to ontinue the ollinear Shubart's orbit. Aording to the preeding

disussion, this gives rise to new horeographies, satellites of the eight. If some

of these are still totally ellipti { and this will happen for a small enough angular

veloity { new satellites of them shall appear, and so on.

Figure 5 shows an illustration of these two possibilities. On the top we display a

satellite horeography of the �gure eight one, obtained from a periodi point under

the Poinar�e map around the �xed point and having only omponent along the fast

frequeny. Therefore, it lives on a \subenter" manifold. The rotation number is

11=37 � 0:297297297; quite lose to the limit rotation number at the �xed point.

Indeed, the variation of the rotation number is quite at along that mode. All the

bodies desribe the same path and this seems to be a loal minimum of the ation.

The dots on the Figure (one on the left, one on the right and the third one at the

origin) show the initial position of the three bodies. For referene also the path of

the �gure eight solution is plotted. The middle sub�gure shows a satellite orbit with

rotation number 8=27: Note that the denominator is now a multiple of 3. The three

bodies desribe slightly di�erent paths. On the Figure the path of one of the bodies

is plotted in ontinuous lines, while the path of another body is plotted in broken

lines. These paths look like urves with rational slope on a torus, slightly shifted

the one from the other. To prevent to have too many lines the path of the third

body is skipped, but an be learly seen where it should be.

On the bottom we display a satellite horeography with non{zero angular mo-

mentum. This value, C � 0:03125986 ; has been seleted to have a solution whih

preesses and loses also after 37 \revolutions" along the eight and 3 full revolutions

around the enter of mass. That is m=d = 3=37: The three bodies desribe, again,

the same path. Linear stability has been heked for this horeography. Figure 6

displays 1/37 of the period, both in �xed and rotating axes.

In general, we do not need to start with a totally ellipti periodi solution. It is

enough that it have some ellipti eigenvalues. For instane, for the horeographies

for N = 4 shown in Fig. 3, we have that the dimension of the enter manifold W



equals 2 in all ases exept d), where it is 4, and e), where it is 0, as it also is for

the trivial irle ase. (We always ignore the 4 ouples of eigenvalues equal to 1 due

to the �rst integrals.)

Remark. To deide if a given horeography is main is not easy. It is not exluded

that some of the horeographies presented here as of main type ould be related by

a family of ontinuous solutions if we allow for periodi solutions in the omplex

phase spae with the omplex period.

By homotoping the potential we an sometimes onnet two di�erent main hore-



ographies. This happens to Fig. 3 e where the homotopy parameter is the exponent

a in the potential 1=r

a

. In Sim�o [2000℄ another horeography, very similar to 3 e,

but having dimW



= 2, is found by following horeography 3 e upon hanging the

potential. Both horeographies arise for the Newtonian potential and belong to the

same lass. See setion 6 for further disussion. Note that although we do not allow

suh potential{varying homotopies in our de�nition of \satellite" horeography, they

are nevertheless useful in understanding horeographies.
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Figure 6: 1/37 of the bottom orbit in Fig. 6. Left: Fixed axes. Right: Rotating axes. The

points marked I

j

(resp. F

j

) for j = 1; 2; 3 denote initial (resp. �nal) onditions.

5.2 The linear hains

Among the simplest horeographies are the \linear hains" formed by di�erent \bub-

bles". Figures 1, 3 a, 3 b, 4 a, 4 b and 4  show examples. All of them seem to be of

main type. Working in S

1

N

a double point z in a hain (or in a general horeography)

has two values of t assoiated to it, say t

a

and t

b

. The (integer) length of the loop

related to z is de�ned to be [t

b

� t

a

℄ (in S

1

N

), where [ ℄ denotes the integer part. As

t

b

� t

a

=2 Z the omplementary length is N �1� [t

b

� t

a

℄: A linear hain with J bub-

bles has J � 1 double points all lying on the x-axis, whih we will label z

1

; : : : z

J�1

in order of inreasing x-oordinate. Note that, if we try to produe a similar hain

without having z

i

on the x-axis, a kind of priniple of minimum interation of the

bubbles leads, by minimization of the ation, to a solution as desribed.

Upon reorienting the loop (reversing time) if neessary, we may assume that

the orresponding lengths of the left hand loops de�ned by these double points

yields an inreasing sequene of integers: 1 � `

1

< `

2

< : : : < `

J�1

. The values

`

1

; `

2

� `

1

; : : : ; `

i+1

� `

i

; : : : ; N � 1� `

J�1

are the lengths assoiated to the bubbles

and haraterize the horeography lass of a linear hain. Note that if `

i+1

= `

i

then

the bubble between z

i

and z

i+1

an be destroyed without passing through a ollision

and hene represents the same horeography as a linear hain with one fewer bubble.

So we assume that the sequene of lengths is stritly inreasing. For ompleteness

we also inlude the ase J = 1; i.e., the trivial irular solution, as a linear hain.



Proposition 5.1 The number of linear hains for N bodies is 2

N�3

+ 2

[(N�3)=2℄

A proof an be found in Sim�o [2000℄. In partiular, the number of main hore-

ographies inreases exponentially with N .

6 Evolution of the horeographies with the potential

As antiipated, we an take a family of homogeneous potentials with f(r) = 1=r

a

;

a > 0 in (1.2). It is reasonable to ask several questions: what happens to a hore-

ography whih exists for a = 1 when a is dereased approahing zero? What is the

fate of a horeography whih exists for a = 2 but fails to exist for a = 1? Are the

diÆulties enountered in trying to prove the onjeture for the Newtonian poten-

tial just tehnial, or are they deeper? It has already been said that from a given

horeography for a = 1 it is possible to �nd, by ontinuation with respet to a,

another horeography also for a = 1. The main goal of this setion is to present

several numerial results in these diretions.

The eight an be ontinued without diÆulty to any value of a > 0: It is found

to be stable in a short domain, roughly a 2 [0:86; 1:23℄: Conerning the ases N = 4

given in Fig. 3, dereasing a they reah a saddle{node bifuration (s-n for short)

and the ontinuation of the family is only possible by inreasing a again. With the

exeption of the mentioned ase e), all of them seem to approah a ollision (either a

single double ollision, several double ollisions or a triple ollision) before reahing

again a = 1. Case ) displays a short stability interval around a = 0:63:

For N = 5 similar things happen. Most of the ases go to a ollision (a quadruple

ollision being now possible), after or before reahing a s-n. Some ases present

several s-n before approahing a ollision, the variation of a being monotone between

two suessive s-n. A ouple of ases return to a = 1, after having a s-n for a < 1,

before approahing a ollision. On the other side the example with 5 bodies on a

symmetrial eight an be ontinued to any value a > 0; while the linear hain with

J = 4 (a super-super-eight) an be ontinued up to a ' 0:0288854; where it has a

s-n and a starts to inrease again.

Now let us onsider a horeography with N = 4 whih seems not to exist for

the Newtonian potential. It should look like Fig. 3 a but with the small loop in-

side the larger one. It ertainly exists for a = 2: Figure 7 shows what happens

when a ontinuation for dereasing a is attempted. As a harateristi of a given

horeography we have taken the minimum distane r

min

= min

1�i<j�N; t2[0;2�℄

r

i;j

(t):

On Fig. 7 a we display the evolution of r

min

with a, starting at a = 2 (marked

as A) and dereasing a. Two s-n are seen, marked as B and D. Proeeding along

the family a ollision is approahed at the point marked as F. On Fig. 7 b the



three orbits shown orrespond to A, B and C in Fig. 7 a, the size of the inner

loop dereasing when a does. Next orbits, D to F, are displayed on Fig. 7 . The

magni�ation shows a lear approximation of F to a binary ollision. A very small

loop appears for orbit C. It beomes as large as the inner one in D, then part of it

moves outside the large loop in E and, �nally, most of the small loop appears outside

the large one in F. This senario is frequently observed in the evolution of the ation

minimization proedure with the Newtonian potential, when it seems that no loal

minimum exists inside the hosen horeography lass.
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Figure 7: Evolution of a horeography as a funtion of a for r
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potentials. See the text.
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Figure 8: Details of small loops for di�erent N . Left: Inner loops for r
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potentials with

values of a for whih a s-n ours. Right: Outer loops for the Newtonian potential. See

the text for additional explanations.

The ase N = 4 with a small loop inside is not an exeption. Instead of N = 4

we an take N > 4 and ask for a small loop of integer length [`℄ = 1 inside a

large loop. Only these two loops are requested for the horeography. In all ases

the behavior seems to be the same one. Figure 8 a displays what happens for the

equivalent of point B in Fig. 7 a, i.e., the �rst s-n enountered when we evolve from

a = 2 downwards. In this Figure we show the small inner loops for several values

of N : 4 to 8, 12 and 36, the loops going to the left for inreasing N . To be able



to put them on the same window we have added to eah urve the oordinates of

the rightmost point in the large loop. For N = 4 we have in Fig. 8 a the same loop

shown in Fig. 7 b with label B. Note the evolution of the tiny loop whih is reated

in Fig. 7 a for inreasing N , like a swallowtail unfolding.

Let a

N;k

be the value of a in the ontinuation, started going down from a = 2

with N bodies, and when the k-th s-n is found. The data orresponding to N = 4;

displayed in Fig. 7 a, are a

N;1

' 1:0344; a

N;2

' 1:5374: It is quite instrutive to

look at similar values for other values of N . They are given in the next table. In

partiular all the a

N;1

values are greater than 1. This gives an evidene of the lak of

existene of this very simple horeography for all N: Furthermore, a tentative guess

of the behavior of a

N;1

as a funtion of N for inreasing N is a

N;1

' 1 + =N

2

; for

some  > 0: For a value of a slightly larger than 1, the horeography with a small

loop of [`℄ = 1 inside a large loop should exist for N large enough, while it seems

not to exist for a = 1. It looks diÆult to take into aount this tiny di�erene in

an analytial reasoning towards existene proofs.

a

5;1

' 1:1720 a

5;2

' 1:3862 a

12;1

' 1:0449 a

28;1

' 1:0096

a

6;1

' 1:1401 a

6;2

' 1:3255 a

16;1

' 1:0273 a

32;1

' 1:0073

a

7;1

' 1:1103 a

7;2

' 1:2914 a

20;1

' 1:0183 a

36;1

' 1:0057

a

8;1

' 1:0887 a

8;2

' 1:2680 a

24;1

' 1:0129 a

40;1

' 1:0046

On the other side, we an onsider the small loop with [`℄ = 1, outside the large

loop, generalizing to arbitrary N the ase shown in Fig. 3 a. The shape of the small

loop is shown in Fig. 8 b for di�erent values of N : 40, 48, 50, 60, 70 and 100. As

before the size of the loop dereases with inreasing N , while to keep the loops on

the same window we have added the oordinates of the leftmost point on the large

loop. The value N = 48 has been seleted beause it is very lose to having a usp

point. The evolution of the shape of the small loops is di�erent from the one found

in the preeding ase.

We �nish with a disussion of a di�erent type. Consider an N -gon. It seems

to be a global minimum for the ation. Assume it is travelled k > 1 times. Is it

still a loal minimum? The simplest ounterexample we have found appears for

N = 7; k = 2: Taking small deviations from this solution the minimization leads to

an inner loop with [`℄ = 3 inside a larger loop. It looks similar to ase A in Fig. 7 b,

but the inner loop is loser to the outer one. It has an ation A ' 182:326; while

the 7-gon travelled twie has A ' 182:729: The ontinuation, starting at a = 1, has

a s-n for a ' 0:304557: But it returns to a = 1 giving a new horeography in the

same lass. This one is a saddle of the ation funtional, with A ' 186:705: This is

also in ontrast with the ase of Fig. 3 e, for whih the horeography in the same

lass, obtained by ontinuation, is also a loal minimum of the ation.



7 Conlusions

Simple horeographies are N -body solutions in whih all N masses hase eah other

around the same urve. We have proved the existene of simple planar horeogra-

phies of arbitrary omplexity and symmetry for strong-fore N -body problems. Most

of these horeographies vanish as the strong fore potential tends to the Newtonian

potential, but still a large number persist. We have investigated this vanishing fat

numerially, and have found a large number of individual Newtonian horeogra-

phies. An analyti existene proof for the Newtonian horeographies beyond N = 3

remains to be found. Whih simple horeography lasses survive in the Newtonian

limit, and what determines whether or not they survive? Is the number of these

lasses �nite? Are all the linear hains with k bubbles, k < N , represented? Can

the �gure eight solution with N bodies be ontinued for all a > 0 and even for

the logarithmi potential if N is odd? It is also an open question whether simple

horeographies an exist when the masses are not all equal and N � 6. For N < 6 it

has been proved (Cheniner (2) [2000℄) that all masses must be equal, using the fat

that horeography for any set of masses implies horeography for equal masses (the

arithmeti mean). The existene of horeographies with arbitrary time intervals

(not neessarily equal) is ompletely open.
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