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Abstract

This article describes a discovery of new remarkable properties in the
free fall periodic orbits of equal masses [1] for the Newtonian three body
problem. First, we �gured out these new properties merely by observ-
ing simulations of the 30 periodic free fall orbits reported in [1] with the
advanced software for integration of ODEs called the Taylor Center [4].
Then we veri�ed those 30 properties numerically utilizing the same soft-
ware, whose high accuracy was very instrumental for this purpose.
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1 Introduction

The three body motion under the Newtonian gravitation has been intensively
studied since Isaac Newton over 300 years, still presenting challenges. Here we
are speaking about the plane case

�x1 = m3(x3 � x1)r31 �m2(x1 � x2)r12
�y1 = m3(y3 � y1)r31 �m2(y1 � y2)r12
�x2 = m1(x1 � x2)r12 �m3(x2 � x3)r23 (1)

�y2 = m1(y1 � y2)r12 �m3(y2 � y3)r23
�x3 = m2(x2 � x3)r23 �m1(x3 � x1)r31
�y3 = m2(y2 � y3)r23 �m1(y3 � y1)r31

at the initial positions q1 = (x1; y1); q2 = (x2; y2); q3 = (x3; y3), where

r12 = ((x1 � x2)2 + (y1 � y2)2)�3=2

r23 = ((x2 � x3)2 + (y2 � y3)2)�3=2

r31 = ((x3 � x1)2 + (y3 � y1)2)�3=2:
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Besides the special cases of elliptic (and other conics) by Euler and Lagrange,
no other versions of regular motion of three bodies were known for a long time.
Since emergence of computers, also numeric simulations were used to explore
the orbits for various initial settings, most of which generated a chaotic motion.
So more surprising were discoveries of remarkable types of plane periodic

motion of three bodies obtained in computer assisted researches. Such were the
discovery of ...

� Choreography, when three bodies move along the same periodic curve one
after the other [6];

� Periodic and relatively periodic orbits [7];

� Free fall periodic orbits [8] meaning that three bodies have zero velocity
at the initial moment - the topic of this paper.

In 2018 Xiaoming Li and Shijun Liao [1-3] discovered hundreds of settings for
initially resting three bodies making periodic motion: i.e. the bodies started at
the given rest points, and returned back to their initial rest points after motion
along sophisticated orbits during a period T .
We call the moments of time when all three bodies rest the break points

paying attention to the triangular formation at the moments of rest.
It�s worth particular mentioning that Xiaoming Li and Shijun Liao [2, 3]

developed and ran their search of various initial settings of the rest points with
the only goal to �gure out solutions having periods. They did it by watching for
the values of the target function

3X
i=1

(jqi(t)� qi(0)j+ j _qi(t)� _qi(0)j) ; _qi(0) = 0 (2)

whether its values are close to zero (with the given threshold).
However, despite setting the goal of obtaining merely periodic solutions end-

ing in the same initial points, all their 30 solutions for equal masses demon-
strated some additional properties not speci�ed in the search criterion:

1. As pointed out by the authors [3], in all those discovered periodic tra-
jectories, the initial rest formations at the moments kT (k = 0; 1; :::)
happened to be not the only one. In every periodic lap of the trajectory
the number of break points was exactly 2: namely the initial moment and
the moment T=2 where all three bodies come to rest, but at a formation
di¤ering from the initial one. That meant that ...

2. The three bodies oscillated between two formations: the initial and second
set of the rest points (speci�c for each simulation).

Though the authors did mention it [3], they did not provide any explanation
for this unexpected "side e¤ect" taking place in all 30 cases.
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We discovered other even more remarkable side e¤ects not speci�ed as a
search criterion too. They appear as certain exact relations, though not in all,
but only in a few of the 30 simulations. Emergence of such uninvited properties
in a massive search is puzzling. These properties are reported in the section
"Newly discovered properties".

2 A proof for item 1

The fact that the properties 1, 2 took place even though never speci�ed as a
search criterion has an explanation, which follows from the next Theorem.

Theorem 1 Free fall periodic orbits have exactly two sets (two formations) of
rest points so that the bodies oscillate between them.

Proof 1 (Provided by Richard Montgomery in a private correspondence). We
may assume that the initial rest formation happens at t = 0 so that _q(0) = 0.
By time reversal invariance we have

qi(�t) = qi(t); i = 1; 2; 3 (3)

for all t. Let T > 0 be the period, i.e. the smallest time such that

qi(T + t) = qi(t); i = 1; 2; 3 (4)

for all t. (Here T > 0 since t = 0 is not an equilibrium point where the orbit
degenerated into a point). Together then, we get qi(�T=2) = qi(�T=2 + T ) =
qi(T=2). Let�s show that qi(T=2) is a second formation of the rest points along
the orbit, i.e. that _qi(T=2) = 0: Note that qi(�T=2� h) = qi(T=2 + h) because
of symmetry (3), while qi(�T=2� h) = qi(T=2� h) because of periodicity (4).
Therefore, qi(T=2 + h) = qi(T=2 � h) for all h. Di¤erentiating it with respect
to h we get _qi(T=2 + h) = � _qi(T=2 � h); or _qi(T=2 + h) + _qi(T=2 � h) = 0:
Then obtaining the lim

h!0
we come to _qi(T=2) = 0 meaning that T=2 is also a

break point of some rest formation.
Now let�s prove that the rest formation at the break point t = T=2 is distinct

from that at t = 0. Suppose the opposite, i.e. that formation qi(T=2) = qi(0) =
qi0, i = 1; 2; 3: As we know that also _qi(T=2) = _qi(0) = 0, we have two initial
value problems for ODEs (1) with the same initial values though for di¤erent
moment of time:

qi(T=2) = qi0; _qi(T=2) = 0

qi(0) = qi0; _qi(0) = 0:

These IVPs are for the same autonomous Newtonian ODEs (1) not depending
on t, therefore these solutions are identical, i.e. qi(t) = qi(t + T=2) meaning
T=2periodicity - which is impossible. Therefore, the formations qi(T=2) and
qi(0) are not equal, thus we proved that there are at least two distinct rest
formations at two break points.
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Let�s prove that there can be only exactly two break points. Suppose that
there exist a third break point t1; 0 < t1 < T=2. That means that the path
would have to stop at t1 and then reverse, returning to 0 thus never making it to
T=2; contradicting that T is the period, and T=2 - a half-period. Therefore, the
orbits in free fall of three bodies have a period T , they oscillate between exactly
two sets of rest formations.

This Theorem explains why the search process of periodic orbits starting
with a break point delivered the orbits all having the second break points.
All such orbits are cataloged and displayed as movies at the authors�site [1].

The �rst 30 simulations in the table present the cases of all three masses equal
1. These simulations also come with the free installation of the software Taylor
Center (where you can watch them in real time with the resolution much higher
than in the movies [1]).
In the next section we report more new properties, taking place, however,

not in all 30 of the above mentioned orbits. Those properties were discovered by
chance in numeric experiments with the 30 simulations performed and veri�ed
with the Taylor Center software.

3 The new properties.

Here we summarize the newly discovered properties taking place in 12 of the 30
orbits.
The Table 1 below shows in which of the 30 simulations [1] these earlier

unknown properties take place.
We consider two triangular formations of the 3 bodies: the initial 4ABC

at the moment t = 0 and the second 4A0B0C 0 at the moment t = T=2, where
4ABC and 4A0B0C 0 are congruent with or without re�ection. This means
the equality of the corresponding angles 6 A = 6 A0; 6 B = 6 B0; 6 C = 6 C 0.
Let the bodies #1, #2, #3 at the initial moment reside correspondingly

at the vertices A; B; C of the 4ABC. Their trajectories, however, may not
necessarily lead to the corresponding vertices A0; B0; C 0 of the 4A0B0C 0, as
some simulations below demonstrate. Among the data collected by the research
program, there are the permutations (��
); where the identity permutation is
denoted Id = (123). If the trajectories of the bodies #1, #2, #3 (black, red, and
blue) lead from the vertices A; B; C to the corresponding vertices A0; B0; C 0

(no matter whether 4A0B0C 0 is a re�ection of 4ABC), the corresponding per-
mutation is Id; otherwise the permutation di¤ers from Id.
These newly discovered properties in 12 of the 30 orbits are the following:

3. In the moments 1
4T and

3
4T the bodies are either in syzygy (item 5), or

they form an isosceles triangle (item 6).

4. The triangle formation at the second break point 1
2T is congruent to the

initial triangle.
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5. In 3 of the 12 orbits in the moments 1
4T and 3

4T the second triangle is
a result of 180� rotation of the initial triangle so that both triangles and
respective parts of orbits are symmetric over the central point lying on the
syzygy, one of the bodies being in the middle. At that, the three vectors
of the velocities in the moments 1

4T and 3
4T are reciprocally parallel.

However...

6. In the remaining 9 orbits the edges are not parallel, and both triangles
are in the relation of re�ection, i.e. the two respective parts of orbits are
symmetric over some line of symmetry, which, however, is not necessarily
the line of syzygy. Speci�cally...

7. If there is no permutation (i.e. Id takes place), then in the moments 1
4T

and 3
4T the 3 bodies are in syzygy on the line of symmetry, otherwise in

the moments 14T and
3
4T the bodies are not in syzygy, forming an isosceles

triangle.

The properties (3-7) are not mentioned in the original sources [1-3], and
therefore they are new. Unlike the properties (1-2) proven to take place in any
free fall periodic orbit, at the moment it�s not known the conditions leading to
the 12 cases of congruency discussed here.

5



At t = T=2 At t = T=4
# Congruency Parallel edges Symmetry Perm Isosceles Syzygy
1
2
3
4 Yes Re�ection (321) Yes
5
6 Yes Re�ection (321) Yes
7
8 Yes Re�ection Id Yes
9
10 Yes Re�ection Id Yes
11
12
13
14 Yes Yes Central (132) Yes Yes
15 Yes Yes Central (132) Yes Yes
16
17
18 Yes Re�ection Id Yes
19 Yes Re�ection (213) Yes
20
21
22 Yes Re�ection Id Yes
23
24
25 Yes Re�ection Id Yes
26
27 Yes Yes Central (213) Yes Yes
28
29 Yes Re�ection Id Yes
30

Tab. 1: New properties in the 30 free fall cases.

4 How the triplets of initial points were obtained

As explained in [1-3], the authors �xed the points q1 = (�0:5; 0); q2 =
(0:5; 0); while the goal of the search algorithm was to obtain points q3 such
that the target function (2) be near zero with the speci�ed accuracy. Below is
a scattered graph for the 30 points q3 obtained in the search process [1-3]:

6



Figure 1. The 30 values for the third initial point q3 obtained in a search
algorithm

The three yellow points correspond to the cases of the central symmetry,
the 9 magenta points correspond to the cases of re�ection, and the remaining
blue points correspond to the orbits with no special properties. This graph does
not reveal any remarkable pattern. There is no mentioning in [1-3] whether the
search algorithm delivered all existing points q3 in the given bounded area of
search, and whether the number of points q3 is �nite or in�nite.

5 Some illustrations

Below are a few illustrations of the newly discovered properties in some of the
12 cases of periodic free fall (the Table 1 summarizes which of the original 30
simulations possess the newly discovered properties.) Illustrations below present
the trajectories of the three bodies (in black, red, and blue), and the triangle
formations at the moments t = 0 (yellow) and t = T=2 (gray). The high
resolution images of all the 12 orbits with the special properties may be found
here [9].
All the 30 simulations may be also viewed dynamically as real time animation

within the Taylor center software, as explained in the Appendix.
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In most cases of the 30 simulations the second formation is typically a tri-
angle dissimilar to the initial one, say like in the Simulation 1.

Simulation #1: the second triangle and the �rst are dissimilar.

However, while watching those 30 simulations, a few of them gave an impres-
sion as though the triangle of the initial formation and the second one seemed
similar. In order to verify if this visual e¤ect is real, we modi�ed the software
for computing lengths of edges and the angles in the triangles. The numeric
results [5] con�rmed, that the visual impression of the similarity was real, being
in fact congruency of the triangles in all the 12 special cases.
For example, in the simulation #18 the second triangle and the �rst are con-

gruent, in a relation of re�ection, and the trajectories connect the corresponding
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vertexes (with the identity permutation Id).

AB = 1 AC = 0:718590490501491 BC = 0:309097112311281
A0B0= 1:00000000170251 A0C 0= 0:718590493477556 B0C 0= 0:309097111598536
A0B0

AB = 1:00000000170251
A0C0

AC = 1:00000000414153
B0C0

BC = 0:999999997694106

Simulation #18: the second and the �rst triangle are in a relation of re�ection,
no permutation.
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Simulations 19: the triangles are in a relation of re�ection with permutation�
123
213

�
The properties of the simulation #14 are even more remarkable: the second

triangle is congruent to the �rst as a result of 180� rotation. I.e. the triangles
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are in a relation of the central symmetry. At that, the trajectories connect not
the corresponding vertexes, but e¤ectuate a permutation

�
123
132

�
.

AB = 1 AC = 0:921456266427119 BC = 0:679289996641939
A0C 0= 0:999999999906395 A0B0= 0:921456266288986 B0C 0= 0:679289996759996
A0C0

AB = 0:999999999906395
A0B0

AC = 0:999999999850092
B0C0

BC = 1:00000000017379
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Simulation #14: the triangles are in a relation of central symmetry with
permutation

�
123
132

�
.

Finally the simulation 30 which does not belong to the remarkable subset
of the 12. It is brought to demonstrate a kind of "approximate symmetry" in
some of the 30 orbits.

Simulation 30: "near" re�ection, whose "symmetry" is "skewed", and no
congruency takes place.

In the following section we are to analyze the numeric data [5] con�rming
the new properties.
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6 The supporting data obtained via the Taylor
Center software

As the new properties so far were con�rmed only numerically, it�s necessary to
explain the numeric process employed for that purpose.
The integration method for the 30 simulations used here was the same mod-

ern Taylor method which was used by the authors [2] calling it Clean Numerical
Simulation (CNS) at their super-computer. As they wrote, their implementa-
tion of the Taylor method admits arbitrary order and double precision. (They,
however, didn�t mention which order they used, and what the double precision
means at their super computer.)
In this Taylor Center software (also admitting an arbitrary order) we used

the order 30 with maximum precision of �oat point numbers supported by the
processors Intel, which is the 10 byte �oat type called extended : 63-bit mantissa
and 16-bit exponent.
For each of the 30 computed simulations the outputted actual data is pro-

vided under link [5] being comprised of the following elements:

� The header containing the sequence # of the simulation, its half-period
(taken from [1]), and the number of integration steps;

� The initial lengths of the three edges of the triangle denoted ao1, ao2, ao3
at t = 0, when body #1 is at vertex A, body #2 - at vertex B, body #3
- at vertex C.

- ao1 (connecting bodies #2 and #3) opposite to vertex A� the initial
position of the body #1 (not necessarily moving towards A0);

- ao2 (connecting bodies #1 and #3) opposite to vertex B� the initial
position of the body #2 (not necessarily moving towards B0);

- ao3 (connecting bodies #1 and #2) opposite to vertex C� the initial
position of the body #3 (not necessarily moving towards C 0).

� The lengths a1, a2, a3 of the three edges of the triangle at the second full
stop at the moment T=2 :

- a1 (connecting bodies #2 and #3);

- a2 (connecting bodies #1 and #3);

- a3 (connecting bodies #1 and #2).

� The "best ratios" between lengths of the edges, chosen among 3! = 6
possible permutations: "the best" meaning those triplets for which the
three ratios are closest to a same value. If neither of the 6 permutations
yields three ratios close to the same value, the message "no similarity"
appears.
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� The 6 values of components of the velocities in the moment T=2 of the
second full stop posted as a proof of reaching the state of full stop and
characterizing the achieved accuracy of the full stop.

If similarity takes place, the data package contains also:

� The proportions yielding approximately the same values, for example
a3/ao1 = 1:00000000202946
a2/ao2 = 0:999999997920113
a1/ao3 = 1:00000000030637.
Here all three proportions are approximately 1 demonstrating congruency.

Remark 1 Neither of the 30 cases demonstrated similarity with the proportion
other than 1.

� The 3� 3 matrix of angles between the edges ao1, ao2, ao3 and edges a1,
a2, a3 in order to see if there are angles close to 0� or 180�, for example

ao1 ao2 ao3
a1 138:847783298464� 179:999999953788� 104:361663992048�

a2 179:999999940341� 138:847783191836� 63:2094472309557�

a3 116:790552658371� 75:6383359097635� 5:33608528907246e� 008�

� The respective permutation.

If the angles close to 0� or 180� are detected, the pairs of parallel edges are
displayed. In the matrix above, such are ao2jja1, ao1jja2, ao3jja3.

7 Notes on accuracy

We see that the ratios expected to be 1, and the velocities expected to be 0,
actually di¤er from the targeted values. The accuracy of those values depend
on several factors: on the accuracy of the parameters provided by the author
[1], and on the limits of accuracy in this Taylor integrator.
In the Taylor Center software the accuracy of integration (in ideal cases)

may achieve up to 63 correct binary digits of the mantissa at every step, which
corresponds to 18 correct decimal digits. Even with such ultimate 63-bit ac-
curacy achievable at one step, the global error increases with growing number
of steps (due to the rounding errors, or worse, due to catastrophic subtraction
error in some problems). For example, in a test for simulation #1 integrated
from 0 to its period T and back to 0, the accuracy of the method in terms of the
absolute error was: about 10�13 for the positions, and 10�12 for the velocities
in 2500 integration steps.
Thinking about the reasons that the actual accuracy of the proportions and

velocities obtained in this numerical experiment was not so good, �rst comes to
mind that the values of the initial positions and the periods were speci�ed by
the authors [1] only up to 11 decimal digits (instead of possible 18 in the PCs).
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8 Conclusions.

We have considered the 30 orbits found in [1] of periodic free fall of 3 equal
masses. These orbits were obtained in an extensive search procedure, set with
the only goal to satisfy the criterion of periodicity (2). However, it appeared that
some of these orbits possess also other remarkable properties never targeted in
the search criterion. Namely, some of the orbits were approximately symmetric
(for example Simulation #30), while 12 orbits happened to be symmetric exactly
(despite that the search goal was not set to �nd orbits with symmetry).
As Figure 1 of scattered initial positions for the point q3 demonstrates, there

is no noticeable pattern in those 30 points.
Given a bounded area for searching q3, the following questions arise:

1. Is the number N of initial points q3 specifying all periodic free fall orbits
�nite or in�nite? (Number N includes the already known 30 orbits).

2. Is the number Ns of initial points q3 specifying all symmetrical periodic
free fall orbits �nite or in�nite? If Ns is �nite, the set of such initial
points q3 is of measure zero so that the probability of �nding those 12
initial values q3 in a random search process is zero too. Then how could
it happen that those 12 special orbits were found?

This enigmatic situation begs for an explanation and further research.
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Appendix: the software and installation

A detailed outline of the Taylor Center software may be found here [4]. In it
the hot link for downloading the software is:
http://taylorcenter.org/Gofen/TaylorCenterDemo.zip .
Download and unzip the �le ("Save", don�t "Open" it in your browser).

Unzip and keep it in an empty folder of your choice, TCenter.exe being the only
executable to run. Preserve this �le and sub-folders structure (in order that the
program work properly).
In the program you have to distinguish theMain (or Front) window, and the

Graph window (which displays trajectories). Within theMain window there are
4 tabbed pages: Equation setting, Debugging, Integration setting, and Graph set-
ting. When you load a script (from Demo or from a script �le), you immediately
get into the Graph window to play with the loaded simulation.
The initial values for 30 free fall periodic solutions were entered into the

Demo of the Taylor Center, each of which can be loaded and played. Here is
how.

1. Go to Demo/3 bodies/Periodic (free fall)/Run simulation #...

2. Enter a number of the desired sample between 1 and 30 in a small window
(top left)1 .

3. When the integration reaches the termination point (the period T ), the
program displays the message. As you click OK, the program opens the
Graph window displaying the entire trajectory. You may wish to Play it
dynamically: by default the play duration is 25 s. Depending on the com-
plexity of the curve, it may require something like 60-80 seconds. Enjoy
the show, and then repeat everything from step 2 for another sample.

1The program loads the ODEs for the 3 body problem with the initial values corresponding
to the selected periodic orbit, compiles, and integrates the problem until reaching the termi-
nation point � the period of this simulation entered from its �le. (The period of the orbit is
visible also in the Front panel in the Constant section as a comment line for constant a ).
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