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Abstract. Analytical continuation of a function represented with an arbi-
trary Taylor expansion at only one point is not constructive (in the sense
further explained). What makes it constructive is an equation (algebraic or
di¤erential of certain class) de�ning this function and enabling its continuation
by means of integration of the ODEs. Such functions comprise an important
sub-class of holomorphic functions - general elementary functions widening
the class of conventional elementary functions so that it becomes closed. In
terms of the generalizing de�nition, the solutions of elementary ODEs are ele-
mentary too. In a frame of the Unifying view based on the general elementary
functions, Automatic Di¤erentiation merges with the theory of holomorphic
ODE�s. It is showed, that continuation of (general) elementary functions via
integration of its ODEs not necessarily expands them into each and every point
where these functions exist and are holomorphic. Some entire functions are
suspects for being elementary everywhere except an isolated point: the point
of their "removable" or "regular" singularity. Thus the unifying view uncovers
a new meaning of the notion "removable singularity" as a new type of special
point (which is rather "unmovable", being proper to a particular holomorphic
function).
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Preface

This survey attempts to gather and systematically present scattered facts re-
lated to Ordinary Di¤erential Equations (ODEs) and computability of n-order
derivatives in a frame of one theory.

Typically ODEs are considered for classes of real valued n�times di¤erentiable
functions. However all along this survey we are to deal with ODEs over a class of
holomorphic functions only for the following reasons.

1. ODEs as generators of n-order derivatives and Taylor expansions

A particularity of our approach is that we regard explicit systems of ODEs as a
tool for computing n-order derivatives of the solution at points of the phase space,
thus obtaining the Taylor expansions representing the holomorphic solution.

That implies that derivatives in this paper are in fact complex derivatives in the
complex plane C, (rather than derivatives along the real axis). However we may
not necessarily mention explicitly the complexity of the functions we deal with.
After all, operations over them in the complex plane C formally look as though on
the real axis.

2. From conventional to general elementary functions

In the 19th century and earlier, ideally mathematicians wished to obtain solu-
tions in terms of the so called elementary functions. Those were a limited number of
conventionally chosen well studied (and tabulated) functions such as trigonometric
and their inverse, exponential, logarithm, rational functions, and �nite superposi-
tions constructed of them (Liouville).

Indeed, it was soon learned that the class of these conventional elementary
functions is not closed even for operation of obtaining an antiderivative, not to
mention more sophisticated ODEs. We are going to widen the concept of the
elementary functions in such a way that the solutions of the general elementary
ODEs always belong to the same class of general elementary functions too.

The fact of the 19th century that certain functions were tabulated, well studied,
and targeted as the desired format of solutions, is no more relevant in the modern
times. It makes more sense to conceptualize and generalize elementary functions
on the basis of a certain fundamental property rather than an arbitrary convention.

Such a generalization of elementary functions was suggested by R. Moore in
the 1960s (being further developed by A. Gofen). Moore de�ned general elemen-
tary functions as those that may be represented as solutions of explicit (nonlinear)
ODEs whose right hand sides are rational in unknown functions and the variable
of integration.

v



vi PREFACE

All the conventional elementary functions satisfy this de�nition, indeed. How-
ever, a much wider class of functions satis�es it too.

3. Terminology

All along this survey we deal only with the general elementary functions. Yet
for the matter of brevity from now on we will call them here simply elementary.
Elementary systems of ODEs mean system of ODEs whose right hand sides are
general elementary functions. Elementariness of a (vector-) function means its
property of being general elementary (which may be violated at certain points).

4. Closedness and fundamental transforms

As we will see, all ODEs with elementary right hand sides may be transformed
to ODEs with rational and further to polynomial and quadratic right hand sides.
Moreover, the widened class of elementary functions is closed in the sense that solu-
tions of elementary ODEs are elementary too (and practically all ODEs appearing
in applications are elementary indeed).

5. When analytical continuation is constructive

The fundamental fact about holomorphic functions is that its Taylor expansion
at only one point (one analytic element) su¢ ces for analytical continuation of this
function into the entire domain of its existence. However this procedure is not
constructive1. Say, we are given an arbitrary analytic element, a Taylor expansion
with a non-zero convergence radius r, whose coe¢ cients are de�ned via certain
recursive formulas

u(t) =
1P
k=0

ak(t� t0)k:

In principle it may be expanded into another point t1 (providing that j t1�t0j < r),
where it expansion would be

u(t) =
1P
k=0

bk(t� t1)k:

However we do not know how to constructively transform ak into bk, because it
requires computation of in�nite sums for which the method of convolution into
�nite expressions is generally unknown.

For example, if ak = 1
kk
at t0 = 0, the series has an in�nite convergence radius

and de�nes an entire function u(t), but we have no constructive way of obtaining
its Taylor coe¢ cients at points other then t0 = 0, nor do we know any other
representation.

Is it possible to obtain a more general expression for Taylor coe¢ cients ak(t0) =
f(k; t0) generating them at any desired point t0 for u(t)? The answer is yes, however

the expression is the Taylor formula ak =
u(k)(t0)

k! for this very unknown function
u(t) - rather a useless tautological statement for the purpose of continuation.

Fortunately, in physical and scienti�c applications the functions of interest are
initially de�ned not by their expansions at single points, but rather as solutions
of equations. If u(t) is de�ned or known to satisfy an algebraic or di¤erential

1With respect to analytical continuation, the term "constructive" applies to a process as
e¢ cient and accurate, as a process of numeric integration of ODEs. "Not constructive" means
that no such process is available.
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equation u0 = F (u; t), the equation enables computation of the Taylor coe¢ cients
at any (regular) point t0, becoming a constructive tool for analytical continuation
via integration.

However the equation is as much constructive2 as our ability to obtain n-order
derivatives of a composite function F (u; t), which in a general case requires re-
peated application of the Faa di-Bruno formula of exponential complexity (further
discussed in the Introduction).

6. When n-order di¤erentiation is constructive

Here is one more manifestation of the special role of elementary functions in
ODEs. It is exactly the class of elementary functions, when n-order di¤erentiation
is possible in constructive way. By that, we mean a possibility of applying the op-
timized formulas for di¤erentiation of expressions over operands (whose derivatives
are considered already known).

The modern Taylor method and optimization of n-order di¤erentiation emerged
in the 1960s. We will use the term Automatic Di¤erentiation (AD)3 narrowly,
referring only to this optimized n-order di¤erentiation.

If ODEs and AD are considered as separate notions, the AD (the Taylor inte-
gration) is a numeric method (one of many), while the ODEs are objects to which
the method is applied. On the contrary, we consider explicit ODEs as a tool of AD
and of analytic continuation (even if only along the real axis), so that ODEs and
the AD represent two sides of the same thing.

7. Summary

Here are seemingly unrelated concepts:
� Elementary functions;
� The class of elementary ODEs closed with regard to their solutions;
� The transforms of all elementary ODEs to the special formats, enabling...
� Optimized computability of n-order derivatives, enabling...
� The modern Taylor method, and analytic continuation;
� Special points unreachable via integration of ODEs - points of violation
of elementariness.

They all however are interdependent and complementary to each other. An
approach revealing the merger of these concepts is important enough by itself,
so that we call it the Unifying view on ODEs and AD framed by the theory of
holomorphic functions.

Chapter 1 introduces the de�nition of elementary functions. Chapter 2 presents
the fundamental theorems, including the Main theorem establishing that the class
of general elementary functions is closed.

2With respect to n-order di¤erentiation, the term "constructive" applies to algorithms of
the polynomial complexity. Term "non-constructive" applies to those of exponential complexity
like the Faa di-Bruno formula, or when no di¤erentiation formula is available. In the latter
case when nothing but the de�nition f 0(z) = lim

h!0

f(z+h)�f(z)
h

is available, its direct numerical

implementation results in a catastrophic subtractive error.
3Generally the term Automatic Di¤erentiation stands for modern techniques of converting

code which computes a function into the code computing the n-order derivatives of the function
- see the survey [Corliss, 2005]. However all along this paper AD is understood more narrowly as
optimized formulas for n-order di¤erentiation.
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The chapter "Fundamental transforms" covers the conversions of all elementary
ODEs to special formats such as the second degree polynomials.

In the �nal chapter we consider open issues such as the nature of the so called
unremovable "removable" singularities as exceptional points, where holomorphic
functions lost their elementariness, for example the function sin z

z at the point z = 0.



CHAPTER 1

Introduction

Issues of computability of n-order derivatives and its optimization re-emerged
in the 1960s thanks to Ramon Moore. These issues are contained in the vague term
"Automatic Di¤erentiation" understood here as the optimized process of obtaining
n-order derivatives. Being a relatively modern topic, it however is based on the
classical Taylor method for ODEs (B. Taylor,1715) and formulas established in the
early eighteenth century by Arbogast [in Leipnik, Pearce 2007].

In the frame of the Taylor method, an Initial Value Problem (IVP) for an
explicit system of Ordinary Di¤erential Equations (ODEs)

(1.1) fu0k = fk(u1; :::; um) ; ukjt=t0 = ak; k = 1; :::; m

is viewed as an explicit �nite di¤erence system for computing n-order derivatives (or
the Taylor coe¢ cients) of the solution, the recursive depth of the source equations
(1.1) being 1.

Then the operator of di¤erentiation should be applied repeatedly to both sides,
increasing the recursive depth. It is possible in principle to obtain any n-order
derivatives of the solution either as symbolic formulas of growing complexity, or as
the numeric values. The latter is our goal farther on along this study.

The concept itself of constructive di¤erentiation of the right hand sides fk
presumes a possibility of applying certain known formulas of di¤erentiation. It
is doable if all fk are �nite compositions over a limited list of functions whose
derivatives are known. (Otherwise, for an arbitrary holomorphic right hand side
fk(u1; :::; um); we would have no available formulas to apply but the de�nition of
the derivative).

Traditionally this limited list of functions was comprised of conventional ele-
mentary functions. We are going to widen it so that:

� it will be de�ned not by a convention, but on the basis of a fundamental
property;

� this class will be wider than a limited list of conventional elementary
functions, and

� it will be closed in the sense that the solutions of elementary ODEs are
elementary too.

1. Some technicalities of n-order di¤erentiation

Complexity of computing n-order derivatives of the solution of ODEs depends
on complexity of the right sides on the one hand, and on the kind of di¤erentiating
algorithm applied to the particular ODEs.

For example, in the simplest case of linear systems with constant coe¢ cients

u0 = Au+ b

1



2 1. INTRODUCTION

where A is a constant matrix, and b is a constant vector, the n-order derivatives
may be trivially obtained: either recursively u(n+1) = Au(n); or even as the �nite
di¤erence solution u(n) = Anu+An�1b, n = 1; 2; :::

However for nonlinear right hand sides the direct process of repeated di¤eren-
tiation generates explicit �nite di¤erence equations of growing recursive depth n:

u
(n+1)
k = [fk(u1; :::; um)]

(n) = fkn(u1; :::; um; :::; u
(n)
1 ; :::; u(n)m ):

Generally n-order derivative [f(u1; :::; um)](n) is expressed via the multivariate
formula of Faa di-Bruno [Leipnik, Pearce 2007]
(1.2)

[f(u1; :::; um)]
(n) = n!

X
S

@n1+n2+:::+nm

@un11 @u
n2
2 :::@u

nm
m
f(u1; :::; um)

mY
i=1

nY
j=1

1

nij !

 
u
(j)
i

j!

!nij

where ni =
nP
j=1

nij and summation is performed over a set S of index matrixes

knijkm;ni;j=1 ; nij � 0

S =

(
knijk

����� nPj=1 j mP
i=1

nij = n

)
;

so that
mP
i=1

ni =
nP
j=1

mP
i=1

nij � n .

For example:

[f(u; v)]0 = f 0uu
0 + f 0vv

0

[f(u; v)]00 = f 00uu(u
0)2 + 2f 00uvu

0v0 + f 00vv(v
0)2 + f 0uu

00 + f 0vv
00

[f(u; v)]000 = f 000uuu(u
0)3 + 3f 000uuv(u

0)2v0 + 3f 000uvvu
0(v0)2 + f 000vvv(v

0)3 +

+3f 00uuu
0u00 + 3f 00vvv

0v00 + 3f 00uvu
00v0 + 3f 00uvu

0v00 +

+f 0uu
000 + f 0vv

000

For the single variable formula (m = 1) the number of its terms is the number of
solutions of the equation

nP
j=1

jnj = n:

That is the number of partitions of n; known to grow exponentially. The number
of terms in the multivariate (m > 1) Faa di Bruno formula obviously exceeds that
number for the single variable formula, growing even faster.

Moreover, in order to apply the Faa di Bruno formula for n-order di¤erenti-
ation of ODEs, we would need an algorithm of obtaining all partial derivatives
@n1+n2+:::+nm

@un11 @u
n2
2 :::@u

nm
m
f(u1; :::; um) for arbitrary right hand sides. For example, func-

tion f in turn may break down into composition of several other functions, so
that we might need even more complex multi-chained version of the Faa di-Bruno
formula.

Fortunately, instead of dealing with arbitrary right hand sides, it is possible:

� First, to convert elementary (non-rational) ODEs to rational right hand
sides (established in the Main Theorem later), and
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� Second - to optimize n-order di¤erentiation of rational expression so that
the amount of the required computation becomes no more than O(n2)
operations.

The Faa di Bruno formula is indeed the most general form for n-order deriva-
tives of the solution, yet it is also extremely ine¢ cient, so that improvements and
optimizations in AD have evolved in the direction away of this formula.

The �rst computational improvement was an introduction of the concept of
normalized derivatives denoted with square brackets:�

d

dt

�n
u = u[n]

def
=
u(n)

n!

The normalized n-order derivatives therefore absorb the factorial factors, becoming
the Taylor coe¢ cients, so that the rule of addition of the orders gets modi�ed:

u[m+n] 6= (u[m])[n] = (m+ n)!

m!n!
u[m+n]:

In notation of normalized derivatives, the fundamental formulas for n-order
derivatives of a product (Leibniz), quotient and power became simpler (doing away
with the combinatorial factors) [Moore 1966]:

w = au+ bv; w[n] = au[n] + bv[n]

w = uv; w[n] =

nX
i=0

u[i]v[n�i](1.3)

r =
u

v
; r[n] =

1

v

 
u[n] �

n�1X
i=0

r[i]v[n�i]

!
(1.4)

p = u�; p[n] =
1

u

n�1X
i=0

�
�

�
1� i

n

�
� i

n

�
p[i]u[n�i]; n � 1(1.5)

where a; b; � are constants.
The Leibniz formula for an arbitrary number m of factors in the normalized

notation simpli�es too:

(1.6) w = u1u2:::um; w[n] =
P

i1+i2+:::+im=n

u
[i1]
1 u

[i2]
2 :::u[im]m :

Comparing the multi-factor formula (1.6) vs. its two-factor version (1.3) ob-
serve that the two factor formula requires the minimal amount of operation 2n =
O(n), as well as formulas (1.4, 1.5) for a quotient and power. On the contrary, for a
number of factors m > 2 this amount is mCm�1n = O(nm�1) quickly growing with
m. It represents an intermediate computational complexity between the extreme
case of the Faa di Bruno and the simplest Leibniz formula.

It was not until the 50s that Ste¤ensen [1957] probably �rst recognized the
importance of introduction of the so called auxiliary variables and decomposition
of expressions in the right hand parts of ODEs into a certain system of explicit
equations containing only one (non-linear) arithmetic operation each, guaranteeing
applicability of the optimal formulas (1.3-1.5). It was this idea of Ste¤ensen that
became the mantra of the Automatic Di¤erentiation: one (non-linear) operation
at a time. First used only for speci�c ODEs in the �eld of celestial mechanics,
this fundamental idea of decomposition appeared applicable to virtually any ODEs
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used in application due to the fact that they convert to rational right hand sides,
discussed in the following chapters.

A curious reader may pose a question (like the late Prof. Michael Lidov did
in the 1980s): what is so special in all those optimized formulas (1.3-1.5) vs. the
general formula of Faa di Bruno? The answer is that the huge variety of possible
monomials in the formula of Faa de Bruno dramatically reduces in the optimized for-
mulas. First, because this variety of partial derivatives @n1+n2+:::+nm

@u
n1
1 @u

n2
2 :::@unmm

f(u1; :::; um)

in general case reduces to partials over only two variable u; v; and second, these
partials are applied not to a general function f; but to a polynomial of degree 2, so
that the orders higher than 2 disappear.



CHAPTER 2

The De�nitions

Ramon Moore [1960] introduced the de�nition of elementary functions as func-
tions of one variable, satisfying explicit systems of ODEs with rational right hand
sides. As to multivariate functions, he considered rational functions (elementary
by de�nition) and compositions formed with rational and elementary functions of
one variable. As we will see, there exist also multivariate elementary functions not
reducible to the rational (item 7 in Table 1).

Definition 1. (Elementariness in one variable). A vector-function f : Cm !
Cn; f = ffk(x1; :::; xm)g; k = 1; : : : ; n; is called elementary in a variable xi near
an initial point (a1; :::; am) if it is regular at this point and there exists a regu-
lar initial value problem for a system of N � n autonomous ordinary di¤erential
equations
(2.1)�

@uk
@xi

= Rki(u1; :::; un; :::; uN ); ukjxi=ai = fk(a1; :::; am); k = 1; : : : ; N;

with rational right hand sides Rki satis�ed by ffk(x1; :::; xm)g:The components
uk are viewed as functions of xi, all the remaining variables being considered as
parameters.

Definition 2. (Elementariness in all variables). A vector-function f : Cm !
Cn; f = ffk(x1; :::; xm)g; k = 1; : : : ; n; is called elementary in all its variables
(x1; :::; xm) near an initial point (a1; :::; am) if it is elementary in each variable xi
(i = 1; : : : ; m) established by m systems of ordinary di¤erential equations (2.1).
A matrix R = kRkikN;mk;i=1 comprised of their right hand sides is called a matrix of
elementariness.

Remark 1. Each of the IVPs (for each of the variables xi) generally contains
its individual numbers Ni of equations. It is our convention for the sake of uni-
formity to �ll in smaller of those systems with "dummy" components @uk

@xi
= 0;

k = Ni + 1; : : : ; N in order that in all of the systems the number of ODEs be
equalized to N .

Remark 2. As each of the systems (2.1) is autonomous, it "hides" the inte-
gration variable xi as one of the functions uk satisfying the trivial ODE @uk

@xi
= 1:

System (2.1) also "hides" all the parameters xj 6= xi as functions satisfying the
trivial ODE @uk

@xi
= 0: Therefore the matrix of elementariness R generally may

include the unit sub-matrix E = k�kikmk;i=1 :

Example 1. A multivariate polynomial is elementary in all variables every-
where (obvious).

5



6 2. THE DEFINITIONS

Example 2. A multivariate rational function is elementary in all variables
everywhere except the points where it is singular (obvious).

Example 3. Consider a function f(x; y) = cos(x)ey: As a function of x it is
represented by a system

f 0x = �g; f jx=a = cos(a)e
b

g0x = f ; gjx=a = sin(a)e
b

(omitting x0 = 1). As a function of y it is represented by a "system"

f 0y = f ; f jy=b = cos(a)e
b

g0y = 0; gjy=b = const (�dummy�component)
(omitting y0 = 1), so that the matrix of elementariness is�

�g f
f 0

�
:

Remark 3. It is obvious that elementariness of a particular vector-function
may be established via in�nitely many systems with various number of equations
(containing even uncoupled equations). Thus there must exist the minimal number
of the equations required for de�nition of a particular vector-function, which we
call "complexity" of this elementary vector function. For example, the function
w = tan t is elementary together with u = cos t; v = sin t in the system

u0 = �v
v0 = u

w0 =
1

u2

(no uncoupled equations in it). Yet this w happened to be de�ned also via a single
ODE

w0 = w2 + 1:

Elementariness of a vector-function is de�ned via an IVP with respect to the
variable of integration in the corresponding rational system of ODEs. Say elemen-
tariness of a vector-function x(t) in t is established via a rational system

x0 = R(x); xjt=0 = a:
However the general solution of this system X(t; a) is also a function of the initial
values a (and perhaps of the parameters). It is not known, under which conditions
solutions of rational ODEs are elementary with respect to the initial values or to
the parameters. We do know however an example of a solution proven to be non-
elementary in the parameter (item 14 in Table 1).

Remark 4. In the frame of this De�nition, the property of elementariness of a
vector-function is de�ned locally at a point of regularity of the initial values. How-
ever by integrating the ODEs, elementariness expands into other regular points of
the vector-function, but only into those that are also regular points of the corre-
sponding system of ODEs.

Remark 5. As the property of elementariness is de�ned locally at a point,
some functions may possibly have points of violation of elementariness at certain
points. For example, in rational functions the points where the denominator is
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zero are points of violation of elementariness, though trivial, because the rational
functions are unde�ned and singular at such points. However there exist functions
whose (stand alone) elementariness (see below) violates at isolated points where the
function is de�ned and holomorphic, for example sin t

t at t = 0 [7].

It is worth noting that the solution of ODEs may happen to be holomorphic
even at the point, which is singular in the phase space of the particular system of
ODEs, thus unreachable via integration of the system (see the Chapter on "Unre-
movable �removable�singularities").

Remark 6. Elementariness of an n�dimensional vector-function sometimes
may be established only via a system of ODEs with number of equations N > n;
like elementariness in x of f(x; y) = cos(x)ey in the example above. We then say
that a (vector-)function is elementary together with the associated components: say
cos t together with sin t.

Is it possible to de�ne a "stand alone" elementariness of a component of a
vector-function not referring to the associated components so that the "stand alone"
elementariness be equivalent to De�nition 1 in certain sense?

Observe, that many examples of elementary functions de�ned via a �rst order
system, also happen to satisfy IVPs for one explicit n�order rational ODE regular
at the initial point. For example, instead of the system u0 = �v; v0 = u, we can
write down a second order ODE u00 = �u de�ning cos t or sin t as well.

Corollary 1. (elementariness via one n�order ODE). A function u(t) sat-
isfying an IVP for an explicit n�order ODE

u(n) = r(t; u; :::; u(n�1)); u(i)
���
t=t0

= ai; i = 1; :::; n� 1

with a rational right hand side r regular at a point t0 is elementary near t0 .

Proof. Any explicit n�order ODE is trivially convertible to an explicit �rst
order system of ODEs by introducing new variables vk = u(k); k = 1; :::; n :8<: u0 = v1

v0k�1 = vk ; k = 2; :::; n� 1
v0n = r(t; u; v1; :::; vn�1)

and it is regular and rational indeed, meaning that u(t) is elementary together
with the associated components vk(t). �

Is it possible to de�ne elementariness via one n�order ODE rather than via a
system of ODEs? The next section deals with this question.

1. One n�order ODE vs. a system of �rst order ODEs

A possibility to de�ne elementariness via one n�order ODE depends on the
question, whether an equivalence between a system of �rst order ODEs vs. one
n�order ODE takes place. More speci�cally, whether the equivalency between an
IVP for an explicit rational system of �rst order ODEs vs. a properly chosen IVP
for one explicit rational n�order ODE exists. The equivalence is understood in the
sense that a solution (say u1) of an IVP

(2.2) u
(n)
1 = f(t; u1; :::; u

(n�1)
1 ); u

(i)
1

���
t=t0

= ai1; i = 1; :::; n� 1
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for one n�order ODE at a regular point t0 belongs to a solution vector of some
regular IVP for a �rst order system

(2.3) fu0k = gk(t; u1; :::; um) ; ukjt=t0 = bk; b1 = a
0
1; k = 1; :::; m

and vice versa: for each component uk of (2.3) there exists a regular IVP for one
particular n�order ODE like (2.2) satis�ed by uk.

The conversion of one explicit rational n�order ODE into a �rst order explicit
system of rational ODEs is trivial (the Corollary), but not the opposite.

In general, if we did not ask for the rational right hand sides in ODEs, for
arbitrary holomorphic right hand sides f; gk this equivalency does take place indeed,
albeit in a trivial tautological sense. Just consider the solution u1(t) of system (2.3),
denoting f(t) = u01(t): Then the equation u

0
1(t) = f(t) is the required equivalent

ODE (2.2).
However with the requirement of rational right hand sides, this question of

equivalency remains unanswered so far, posed as the Conjecture [Gofen 2008] (see
more in the chapters "Transforms" and "Open questions").

The next two chapters cover the main theorems and the fundamental properties
of elementary functions, summarized in Table 1.



CHAPTER 3

The main theorems

In this Chapter we are going to establish three fundamental theorems about
closedness of the class of elementary functions in the following sense. We are to
prove that the composition of elementary vector-functions is elementary (Theo-
rem 2), and the inverse to an invertible elementary vector-function is also elemen-
tary (Theorem 3).

Moreover, if the right hand sides of an explicit system of ODEs comprise an
elementary vector-function, the solution is an elementary vector-function too. The
solution therefore does belong to the same class as the right hand sides themselves.
This fundamental fact is established by the following

Theorem 1. (Elementariness of solutions of ODEs). Let the initial value
problem

fu0k = fk(u1; :::; um) ; ukjt=t0 = ak; k = 1; :::; m

be regular near t = t0; and the vector-function ffk(u1; :::; um)g of the right hand
sides elementary near (a1; :::; am) in all the variables. Then its solution fu1(t); :::; um(t)g
is elementary at t = t0; i.e. it satis�es a regular IVP for a (larger) system of ra-
tional ODEs (to be constructed in the process of the proof).

Proof. If the vector-function ffk(u1; :::; um)g is already rational, the theorem
is obviously true. Otherwise the fact that the vector-function ffk(u1; :::; um)g is
elementary near (a1; :::; am) in all the variables means that for each of the variables
uj (j = 1; :::; m) we can produce a particular rational system of autonomous ODEs
de�ning ffkg as a function of this variable uj (the others being considered as
parameters): �

@fi
@uj

= Rij(f1; :::; fm; :::; fn) ; i = 1; :::; m; :::; n:

Introduce new variables

vi = fi(u1; :::; um) vijt=t0 = bi = fi(a1; :::; am); i = 1; :::; n:

Di¤erentiate the new variables:

v0i = [fi(u1; :::; um)]
0 =

mP
j=1

@fi
@uj

u0j =
mP
j=1

Rij(f1; :::; fm; :::; fn)vj =

=
mP
j=1

Rij(v1; :::; vm; :::; vn)vj ; i = 1; :::; n:

9
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Merging these equations with the source ODEs, obtain the regular IVP for a closed
system8<:

u0k = vk; ukjt=t0 = ak; k = 1; :::; m

v0i =
mP
j=1

Rij(v1; :::; vm; :::; vn)vj ; vijt=t0 = bi; i = 1; :::; n

which proves that solution (u1; :::; um) is elementary as a part of a larger vector-
function (u1; :::; um; v1; :::; vn): �

Remark 7. It is always possible therefore to convert a non-rational (transcen-
dental) system of elementary ODEs to a larger rational system of ODEs (say, to
rid of transcendental right hand sides). The number of the added equations does not
exceed the number n of rows in the matrix of elementariness for the (non-rational)
right hand sides of the source system. In particular cases however the total number
of equations may happen to be less than m+ n due to simpli�cations.

Example 4. Following the reasoning of the Theorem, the elementary (tran-
scendental) IVP u0 = eu; ujt=0 = a converts to the rational system

u0 = v; ujt=0 = a
v0 = v2; vjt=0 = e

a:

Simpli�cation is possible here: actually v = 1
e�a�t so that u is de�ned via one

rational ODE

u0 =
1

e�a � t ; ujt=0 = a

having the solution u = � ln(e�a � t).

The fact that a composition of elementary vector-functions is elementary vector-
function is established in the following

Theorem 2. (Elementariness of a composition of functions). Let the vector-
function y : Ck! Cm; y =fyj(x1; :::; xk)g; j = 1; :::; m; be elementary near
(x1; :::; xk) in all its variables, and a function f1(y1; :::; ym): C

m! C1 be elemen-
tary near (y1; :::; ym) in all its variables too. Then the composition

f1(y1(x1; :::; xk); :::; ym(x1; :::; xk)) = z1(x1; :::; xk)

is elementary near (x1; :::; xk) in all its variables.

Proof. Let elementariness of the function f1 be established by a matrix P =
kpijki=n; j=mi; j=1 of rational functions pij(f1; :::; fn), and elementariness of the vector-

function y - by a matrixQ = kqjlkj=M; l=k
j; l=1 ; M � m of rational functions qjl(y1; :::; yM ).

Denote the compositions

fi (y1(x1; :::; xk); :::; ym(x1; :::; xk)) = zi(x1; :::; xk); i = 1; :::; n:

Then for each of the variables xl; l = 1; :::; k

@zi
@xl

=
mX
j=1

@fi
@yj

@yj
@xl

=
mX
j=1

pij(f1; :::; fn)qjl(y1; :::; yM ) =

=
mX
j=1

pij(z1; :::; zn)qjl(y1; :::; yM ); i = 1; :::; n
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so that for each xl , l = 1; :::; k we obtained a closed system whose right hand
sides are all rational8>><>>:

@zi
@xl

=
mX
j=1

pij(z1; :::; zn)qjl(y1; :::; yM ); i = 1; :::; n

@yj
@xl

= qjl(y1; :::; yM ); j = 1; :::; M

thus establishing elementariness of z1(x1; :::; xk) in all its variables. These right
hand sides for all variables xl; l = 1; :::; k may be organized into a matrix

R =





PQ0Q




 ; Q0 = kqjlkj=m; l=kj; l=1

(Q0 is an m� k sub-matrix of M � k matrix Q). �

Remark 8. The number M + n of equations establishing elementariness of
the composition equals to the sum of those numbers for the vector-functions y and
z.

Remark 9. There are examples of functions looking as though a superposition
of elementary functions but whose elementariness violates at certain point. For
example, both functions sin t and t are elementary everywhere, yet as it was proven,
the stand alone elementariness of sin tt violates at t = 0. However the functions sin tt
is a composition of a rational function R(x; y) = x

y and elementary functions sin t
and t . The rational function R is not elementary at points where y = 0, therefore
no contradiction to the Theorem takes place.

Elementariness of the inverse vector functions is established by the following

Theorem 3. (Elementariness of an inverse vector-function). Let the vector-
function y : Cm! Cm; y =fyk(x1; :::; xm)g; k = 1; :::; m; be invertible and
elementary near (x1; :::; xm) in all its variables. Then the inverse vector-function
X is elementary in the respective neighborhood of (y1; :::; ym) in all the variables
too.

Proof. Let X =fXi(y1; :::; ym)g be the inverse to y; and let elementariness of
y be established by the matrix R = krkikk=M; i=m

k;i=1 ; M � m of rational functions
rki(y1; :::; ym; :::; yM ). That means that for each xi�

@yk
@xi

= rki(y1; :::; ym; :::; yM ) ; k = 1; :::; m; :::; M:

Denote R0 = krkikk=m; i=mk;i=1 (a square m � m sub-matrix of M � m matrix R),

and R1 = krkikk=M; i=m
k=m+1; i=1 so that

R =





R0R1




 :

Observe that R0 represents a Jacobian of the vector function y; thus it must be
regular at point (x1; :::; xm) because the vector-function y is invertible, so that
R�10 exists. Therefore 



@Xi@yk





 = 



@yk@xi




�1 = R�10 :
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Obtained by inversion of rational matrix R0; the elements of R
�1
0 = kqikki=m; k=mi; k=1

must all be rational functions too. So for each yk we have a system of ODEs�
@Xi
@yk

= qik(y1; :::; ym; :::; yM ) ; i = 1; :::; m

in unknown functions Xi and yk: not yet closed. Considering yk an independent
variable, obtain ODEs for all remaining yj :

@yj
@yk

=
mX
l=1

@yj
@xl

@xl
@yk

=
mX
l=1

@yj
@xl

@Xl
@yk

=
mX
l=1

rjlqlk; j = 1; :::; m; :::; M:

The right hand sides of these systems therefore may be presented as a matrix

RR�10 =





R0R1




R�10 =





 E
R1R

�1
0






so that only the equations for j = m+1; :::; M are non-trivial. Finally, for each yk
the closed system

(3.1)

8>>>>>><>>>>>>:

@yj
@yk

= �jk; j = 1; :::; m;

@yj
@yk

=

mX
l=1

rjl(y1; :::; yM )qlk(y1; :::; yM ); j = m+ 1; :::; M

@Xi
@yk

= qik(y1; :::; yM ); i = 1; :::; m

establishes elementariness of the vector function X in all its variables y1; :::; ym.
The matrix of elementariness is

Q =





RR�10R�10





 =








E
R1R

�1
0

R�10








�

Remark 10. Observe that ODEs (3.1) for components Xi of the inverse vector-
functions are not coupled. Thus we can write down smaller closed systems of ODEs
for each of the components Xi separately (i does not run from 1 through m, but
takes only one value).

Corollary 2. For m = 1, when y1(t) is elementary satisfying the system

fy0i = ri(y1; :::; yM ) ; i = 1; :::; M;

the inverse function T (y1) is elementary satisfying the system8>><>>:
dT

dy1
=

1

r1(y1; :::; yM )
dyi
dy1

=
ri(y1; :::; yM )

r1(y1; :::; yM )
; i = 2; :::; M:

Corollary 3. Let the vector-function y : Cm! Cm; y =fyj(x1; :::; xm; p)g; j =
1; :::; m; with a parameter p be invertible and elementary near (x1; :::; xm; p) in all
its variables including the parameter. Then the inverse vector-function X is elemen-
tary in the respective neighborhood of (y1; :::; ym; p) in all its variables including
the parameter too.
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Proof. The method of the proof and the ODEs establishing elementariness in
(y1; :::; ym) remain the same as in the Theorem, because the parameter does not
occur in the ODEs explicitly. The fact that the source vector y is elementary in p
is given by the system of corresponding rational ODEs�

@yk
@p

= rk(y1; :::; ym; :::; yM ) ; k = 1; :::; m; :::; M:

Now consider the inverse vector X(y1; :::; ym) depending on p only via (y1; :::; ym) :

@Xi
@p

=
mX
l=1

@Xi
@yl

@yl
@p

=

=
mX
l=1

qil(y1; :::; ym; :::; yM )rl(y1; :::; ym; :::; yM ):

The closed system establishing elementariness of the inverse vector in parameter p
is: 8>><>>:

@yk
@p

= rk(y1; :::; ym; :::; yM ); k = 1; :::; m; :::; M:

@Xi
@p

=

mX
l=1

qil(y1; :::; ym; :::; yM )rl(y1; :::; ym; :::; yM )

�
Remark 11. While elementariness in the parameters of the general solution of

elementary ODEs is an open question, for the inverse vector-function elementari-
ness in the parameter is proved.





CHAPTER 4

Properties of elementary functions

The main properties of elementary functions are summarized in Table 1 below.
Items 3-5, 9 were proved in the chapter Main Theorems.

Item 6: Multivariate algebraic functions are elementary as inverse to the poly-
nomial functions.

Item 7: Let elementariness of u(t) be established by the system u0 = R(u; t):
Then the derivative u0 = v satis�es a rational equation v0 =

P
@R
@ui
Ri +

@R
@t .

Item 8: The antiderivative u(t; x) =
R
f(t; x)dt satis�es the ODE u0t = f(t; x)

where x is a parameter and f is elementary. Therefore u is elementary in t by
Theorem 1, but it can happen to be non-elementary in x like the Gamma integral
(Item 14).

Item 10 : Consider the Gamma function �(t) at a regular point t0 and its
Taylor expansion. The partial sums Sn(t) of the Taylor expansion are elementary
as polynomials and they do converge: lim

n!1
Sn(t) = �(t). Yet �(t) is later proven

non-elementary.
Items 11-15 are discussed farther in the article.

15
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1 Polynomial functions

Elementary in all variables everywhere
being trivial examples of multivariate
elementary functions
(see item 7 for the non-trivial)

2 Rational functions

Elementary in all variables everywhere
except its points of singularity, being
trivial examples of multivariate
elementary functions
(see item 7 for the non-trivial)

3
Conventional elementary
functions and some
special such as Airy�s

Elementary

4
Composition of elementary
in all variables
vector-functions

Elementary in all variables
(Theorem 2)

5
Inverse to an elementary
in all variables
vector-function

Elementary in all variables
(Theorem 3)

6

An inverse function
Xn(x1; :::; xn�1) de�ned
via an implicit equation
F (x1; :::; xn) = 0;
where F is elementary
in all variables

Elementary in all variables
(Corollary 3)

7
Multivariate
algebraic functions

Elementary at regular points
in all variables
exemplifying multivariate
elementary functions
generally not expressible
via rational functions

8
Derivatives of
an elementary function

Elementary

9
Integral

R
f(t; x)dt;

f elementary in t; x

Elementary in t, but not necessarily in x:
Only one such example (item 15)
proven non-elementary.

10

Vector-function uk(t; x),
a solution of an IVP
fu0k = fk(u1; :::; un; x) ;
ffkg elementary
in all variables

Elementary in t (Theorem 1),
not necessarily in x .
Analytical continuation in t
is doable into the domain
of regularity of the ODEs

11 lim
n!1

fn(t); all fn(t) elementary Not necessarily elementary

12
P1

n=0 ant
n converging to f(t),

an are arbitrary

Not necessarily elementary.
Generally a method of analytical
continuation not known.

13

P1
n=0 ant

n converging to f(t),
an obtained via AD formulas
for elementary ODEs

Elementary. Analytical
continuation is doable
via integration into the domain
of regularity of the ODEs

14 Euler�s Gamma function �(x) Not elementary everywhere

15
G(t; x) =

R t
0
ux�1e�udu

generating �(x) so that
�(x) = G(1; x)

Elementary in t,
non-elementary in x
for all t > 0
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Table 1. Properties of elementary functions





CHAPTER 5

Fundamental transforms

1. Elementary systems - into special larger systems

In this section we are to show that all explicit �rst order systems of ODEs with
elementary right hand sides are convertible to larger systems in special formats
summarized in the Table 2 below.

(1) An explicit �rst order system of ODEs whose right-hand side
is elementary vector-function converts to. . .
(2) A system of ODEs whose right-hand sides are rational functions
(Theorem 1). At regular points it further converts to. . .
(3) A canonical system: an ex-
plicit system of algebraic and dif-
ferential equations for comput-
ing n-order derivatives requiring
O(n2) operations.

(4) A system, whose right-hand
sides are polynomials. It fur-
ther converts to. . .

(5) Polynomial ODEs of degree
� 2. It further converts to poly-
nomial ODEs of degree 2 with ...
(6) ...with coe¢ -
cients 0, 1 only
(Kerner [6])

(7) ... with
squares only
(Charnyi [7])

Table 2. Transformations of elementary systems of ODEs

We speak about conversion of the source system into a larger target system
of ODEs in the sense of the equivalent transformation. That means the solution
vector of the target system contains the solution vector of the source one. Some
components of the target system are introduced as known relations over the source
components. Therefore the initial values of the target systems are not free. The
newly introduced components are functions of the source initial values, while the
corresponding relations are in fact the integrals of the target system.

Let a system of ODEs

(5.1) fu0k = fk(u1; :::; um) ; ukjt=t0 = ak; k = 1; :::; m

be an elementary meaning that the vector-function ffk(u1; :::; um)g is elementary
in all its variables. The possibility of transformation to a rational system was proved
in Theorem 1. To not complicate our notation, assume system (5.1) to be already
rational.

19
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1.1. Canonical system. (Table 2 cell 3).
Assuming the right hand side all rational, we can introduce the so called aux-

iliary variables um+1; um+2; ::: in a sequence of explicit equations with a goal that
only one arithmetic operation is allowed in the right hand sides:

(5.2)
�
uk = rk(u�; u�); �; � < k; k = m+ 1; :::; M
u0k = u�; � �M; k = 1; :::; m:

Here rk(u�; u�) stands for a rational function implementing one of the four arith-
metic operations over no more than two operands, so that the optimized formulas
(1.3-1.5) of n�order di¤erentiation can be applied. This format is neither unique,
nor the shortest possible1.

The canonical form is the main instrument of Automatic Di¤erentiation for
iterative computing of n�order derivatives. At i�th iteration, formulas (1.3-1.5)
require O(i) operations, i = 1; :::; n; which sums up to O(

nP
i=1

i) = O(n2): It is due

to this estimate that AD and the modern Taylor method are practically feasible
and compete with other methods of numeric integration.

The rest of transformations (4-7) are important in theoretical considerations.

1.2. Conversion to polynomial systems. (Table 2 cell 4).
Assume system (5.1) to be already rational and regular at an initial point so

that �
u0k =

pk(u1; :::; um)

qk(u1; :::; um)
; ukjt=t0 = ak; k = 1; :::; m:

Introduce new variables

vk =
1

qk(u1; :::; um)
:

Then

u0k = pk(u1; :::; um)vk; ukjt=t0 = ak; k = 1; :::; m:

v0k = �v2k
�
@qk
@u1

u01 + :::+
@qk
@um

u0m

�
=

= �v2k
�
@qk
@u1

p1v1 + :::+
@qk
@um

pmvm

�
; vkjt=t0 =

1

qk(a1; :::; am)

is a polynomial system. It is not necessarily the optimal1.
The further transforms (cells 5-7 in the Table) to polynomials of degree 2 and

the special formats were �rst introduced in the papers [Charnyi 1970] and [Kerner
1981 ] independently. Both authors perhaps were not aware of the Moore�s concept
of elementary functions and about the uniform method of converting elementary
ODEs into the rational ones (as in Theorem 1). They did mention however that the
conventional elementary functions satisfy rational ODEs, and ODEs in applications
are comprised of the conventional elementary functions.

1A shorter system may be obtained by identifying the common sub-expressions.
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1.3. Conversion to polynomial systems of second degree. (Table 2
cell 5).

Assume that the source system (5.1) is already converted to the polynomial
system
(5.3)
u0k = Pk(u1; :::; um) =

X
(�; �; ::: !)

bk��:::!u
�
1 :::u

!
m; ukjt=t0 = ak; k = 1; :::; m

and the maximal degree of the polynomials Pk is r. Consider a set of all monomials
u�1 :::u

!
m of a degree � r: the number of such monomials is mr: Introduce mr new

variables v��:::! = u�1 :::u
!
m. In these new variables equations (5.3) become linear:

(5.4) u0k =
X

bk��:::!v��:::!; k = 1; :::; m:

Obtain derivatives of the newly introduced variables:

v0��:::! = (u�1 :::u
!
m)

0 =

= �(u��11 :::u!m)u
0
1 + :::+ !(u

�
1 :::u

!�1
m )u0m =

= �v��1;�:::!u
0
1 + :::+ !v��:::!�1u

0
m =

= �v��1;�:::!
X

b1��:::!v��:::! + :::+ !v��:::!�1
X

bm��:::!v��:::!:(5.5)

Equations (5.4, 5.5) comprise a closed polynomial system of second degree. Denote
multi-index variables v��:::! in linearly indexed variables wk; k running from 1 to
N = mr: In this new notation, rewrite system (5.4, 5.5) as a general second degree
polynomial system

(5.6)

8<:w0k =X
i; j

bkijwiwj +
X
i

bkiwi + c
k ; k = 1; :::; N:

This second degree polynomial system may be converted to a second degree form by
introducing a dummy variable wk : w0k = 0; wkjt=t0 = 1; (k = N+1) and using
it as a factor in the equations. To not complicate the notation, rewrite equation
(5.6) as a form with the same coe¢ cients

(5.7)

8<:w0k =
NX

i; j=1

bkijwiwj ; k = 1; :::; N:

1.4. Conversion to a system with degree 2 forms in zeros and ones
only. (Table 2, cell 6, [Kerner 1981]).

Introduce N4 new variables xijkl in system (5.7) through relations

xijkl = b
k
ijwl; i; j; k; l = 1; :::; N:

Di¤erentiate them taking into consideration equations (5.7):

x0ijkl = bkijw
0
l = b

k
ij

NX
�; �=1

bl��w�w� =
NX

�; �=1

bkijw�b
l
��w�

=
NX

�; �=1

xijk�x��l� ; i; j; k; l = 1; :::; N:
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This is a closed system with degree 2 forms, each containing zeros and ones only
(not all possible monomials xijk�x��l� occur in each of the forms).

1.5. Conversion to a system in squares only. (Table 2, cell 7 [Charnyi
1970]).

Introduce C2N new variables xij ; yij for each pair of di¤erent wi, wj in system
(5.7) through relations

wi = xij + yij ; xij = (wi + wj)=2

wj = xij � yij ; yij = (wi � wj)=2
so that system (5.7) now contains squares only,

w0k =
NX

i; j=1

bkij(x
2
ij � y2ij); k = 1; :::; N:

To close the system, obtain ODEs for xij ; yij :

x0ij = (wi + wj)=2 =
1

2

NX
�; �=1

(bi�� + b
j
��)(x

2
�� � y2��)

y0ij = (wi � wj)=2 =
1

2

NX
�; �=1

(bi�� � b
j
��)(x

2
�� � y2��)

Rewrite these three groups of equations in wi; xij ; yij into linearly indexed variables
zk; k = 1; :::; N; :::; M :(

z0k =
MX
i=1

cki z
2
i ; k = 1; :::; M

which is a polynomial system in squares only.
The methods of transforms (4-7) performed above are neither unique, nor nec-

essarily optimal. They were chosen for the reason of uniformity and simplicity
only.

2. Elementary systems - into one n�order ODE

In the previous section we considered transforms of the �rst order system into
larger systems with special features. Is an "opposite" transform, from a system to
one ODE (of an order n) possible too?

In the chapter "De�nitions" we posed a question whether the equivalency be-
tween a regular IVP for a system of �rst order ODEs vs. a regular IVP for one
ODE of order n really takes place in the class of ODEs with rational right hand
parts. As of today, the complete solution of this problem is not known. A partial
solution follows.

Theorem 4. For each component uk of the solution of a regular IVP (5.1)
with elementary right hand sides there exists an n�order implicit polynomial ODE

P (t; u; u0; :::; u(n)) = 0

with a nonzero polynomial

P (T; U0; U1; :::; Un)

satis�ed by u = uk(t).
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Remark 12. The Theorem does not claim however as though

@P (t; U0; U1; :::; Un)

@Un

����
t=t0

6= 0;

which would be equivalent to the Conjecture [Gofen 2008] not yet proved.

Proof. Assume that the source system (5.1) is already polynomial. For sim-
plicity consider it in variables u; v; w and polynomials F; G; H

u0 = F (t; u; v; w)

v0 = G(t; u; v; w)(5.8)

w0 = H(t; u; v; w)

with the goal of obtaining an n�order implicit polynomial ODE satis�ed by u.
Repeatedly di¤erentiate the equation for u obtaining an in�nite sequence

u0 = F1(t; u; v; w) = F (t; u; v; w)

u00 = F2(t; u; v; w) =
@F1
@T

+
@F1
@U

F +
@F1
@V

G+
@F1
@W

H

::::

u(n) = Fn(t; u; v; w) =
@Fn�1
@T

+
@Fn�1
@U

F +
@Fn�1
@V

G+
@Fn�1
@W

H(5.9)

::::

of nonzero2 polynomials Fn(t; u; v; w); n = 1; 2; ::: Consider equations (5.9) as an
algebraic system over (t; u; v; w) treating u(n) as parameters

Fn(T; U; V; W )� Un = An(T; U; V; W; Un) = 0; n = 1; 2; :::

This system does have a solution (the solution of the IVP). In order to rid of V; W;
apply algebraic elimination. To rid of W , form the resultants hA1; A2i = B1,
hA1; A3i = B2, obtaining a new system without W :

0 = B1(T; U; V; U1; U2)

0 = B2(T; U; V; U1; U3)

To rid of V , form the resultants hB1; B2i = P (T; U; U1; U2; U3); with polynomial
P delivering the required ODE. �

Disregarding impracticality of the method of resultants, this Theorem estab-
lishes the possibility of transformation of an explicit polynomial �rst order ODEs
into one implicit polynomial ODE of order n, leaving open the question about
possible singularity of this ODE at the initial point.

2If one - and therefore all subsequent Fn were zero polynomials, the solution u ought to be
a polynomial in t, surely a solution of a polynomial ODE.





CHAPTER 6

Non-elementariness of Gamma function and
Gamma integral

Theorem 5. At any point x, the Euler�s Gamma function �(x) is not elemen-
tary.

Proof. Suppose it is, i.e. it satis�es some rational system (5.1). As it was
showed in the previous chapter, rational system (5.1) converts to an implicit poly-
nomial ODE

P (t; u; u0; :::; u(n)) = 0

so that �(x) must satisfy this ODE, which contradicts to the theorem of Gölder
[Gelfond, 1971]. According to it, �(x) can not be a solution of any polynomial ODE
of any order, which proves the Theorem. �

Now consider the Gamma integral

G(t; x) =

tZ
0

�x�1e��d� :

Theorem 6. At any point x, the function G(t; x) is not elementary in x for
any t > 0:

Proof. Suppose it is, i.e. G(t; x) = G1(t; x) satis�es a rational system near
some point (t; x), t > 0 �

@Gk(t; x)

@x
= Rk(G1; :::; Gm) :

It converts to implicit polynomial ODE

P

�
x; G(t; x);

@G(t; x)

@x
; :::;

@nG(t; x)

@xn

�
= 0:

Consider the limits

lim
t!1

@nG(t; x)

@xn
=
dn�(x)

dxn

existing for any x except the poles of the Gamma functions. Now apply the lim
t!1

:

�rst to the polynomial P; and then - directly to its variables (which is possible

25
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because polynomial function is continuous):

lim
t!1

P

�
x; G(t; x);

@G(t; x)

@x
; :::;

@nG(t; x)

@xn

�
=

=

�
x; lim

t!1
G(t; x); lim

t!1

@G(t; x)

@x
; :::; lim

t!1

@nG(t; x)

@xn

�
=

= P

�
x; �(x);

@�(x)

@x
; :::;

@n�(x)

@xn

�
which is impossible due to the previous Theorem. �

These two are so far the only examples of non-elementary functions: non-
elementary at all points of their regularity. Other solutions of non-linear �nite
di¤erence equations, or some solutions of ODEs as functions on parameters, may
be suspects for being non-elementary also - until something similar to the Gölder
Theorem for �(x) is established for them too.

Functions which are suspects for having isolated non-elementary points are
discussed in the next chapter.



CHAPTER 7

Regular solutions of singular ODEs

Analytical continuation of elementary functions usually happens via integration
of rational systems of ODEs regular in the points of the phase space, so that the
Taylor coe¢ cients are obtainable by evaluation of these explicit ODEs or the canon-
ical equations. This way, analytical continuation of the solution is possible into all
points where the solution is holomorphic and the ODEs are regular. However the
latter is not always the case.

The solutions may be holomorphic at a particular point, which happened to be
singular for the corresponding ODEs. For example, such is the point t = 0 for the
solution x = tn (n - natural) of the IVP

x0 =
nx

t
; xjt=1 = 1;

not reachable therefore via integration of this ODE. Indeed, for a solution as simple
as this, we can produce a trivial regular ODE x0 = ntn�1 integrable into any point.

However there exist holomorphic (actually entire) functions with such a par-
ticular point, at which no rational ODE satis�ed by this function can be regular
[Gofen 2008, Flanders 2007]. For example, such are the solutions of the following
singular ODEs:

tx00 � x = 0; xjt=0 = 0; x0jt=0 = 1;

or

tx0 � tx+ x� 1 = 0; xjt=0 = 1;
�
x(t) =

et � 1
t

is the solution
�
.

If we knew that these functions cannot satisfy also any explicit system of rational
ODEs regular at t = 0, it would mean they are examples of holomorphic functions
non-elementary at one isolated point. Meanwhile they are only suspects for being
non-elementary at the point t = 0.

Remark 13. Unlike �(z) which can not satisfy any n�order polynomial ODE,
these two functions do satisfy polynomial ODEs. However these ODEs happen to
have singularity at the point, where the solution is regular.

1. When explicit evaluation of the Taylor coe¢ cients fails

In explicit rational ODEs the only possible source of singularities in the right
hand sides are zero denominators (not to be confused with possible singularities
of the solution itself). Consider equation (7.1) in a canonical system containing a
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28 7. REGULAR SOLUTIONS OF SINGULAR ODES

quotient:

u = :::

v = :::

equations depending on u; v

w =
u

v
(7.1)

equations depending on u; v; w:

If v = 0 at a point t = t0, the standard AD formula for n�order derivatives of a
quotient (1.4) is not applicable, albeit function w may happen to be holomorphic
at this point.

Remark 14. If w is regular at t = t0 while v ! 0; then also u ! 0 and the

expression u[n] �
n�1P
i=0

r[i]v[n�i] ! 0 in formula (1.4). Numerically this e¤ect shows

up as the catastrophic subtractive error.

The convergent Taylor series for w may be obtained even in this degenerated
case due to the enhanced quotient formula established in the following

Lemma 1. If

(7.2) vjt=t0 = v0jt=t0 = ::: = v[p�1]
���
t=t0

= 0; but v[p]
���
t=t0

6= 0

in the equation w = u
v ; and the function w is holomorphic at this point, then

(7.3) w[n] =
1

v[p]

�
u[n+p] �

n�1P
i=0

w[i]v[n+p�i]
�
:

Proof. Apply the Leibniz formula of order n+ p to the equation u = wv

u[n+p] = w[n+p]v + :::+ w[n+1]v[p�1] + w[n]v[p] + :::+ wv[n+p]

observing that at t = t0 the �rst p monomials disappear:

u[n+p] = w[n]v[p] + w[n�1]v[p+1] + :::+ wv[n+p]:

Obtain the target formula (7.3) by resolving the previous equation in w[n]: �

For p = 0 (meaning vjt=t0 6= 0) this formula reduces to the standard for-
mula (1.4) for n�order derivatives of a quotient. According to formula (7.3), if the
conditions (7.2) take place for the equation (7.1) with p > 0, the explicitness of
recursive n�order di¤erentiation breaks: u[n+p] and v[n+p] can not be obtained by
recursive di¤erentiation of explicit system (7.1) (unless the equations above (7.1)
are uncoupled, enabling their recursive di¤erentiation disregarding the rest of the
system).

When a canonical system, or generally an algebraic-di¤erential system, gets
implicit, the recursive evaluation of the Taylor coe¢ cients requires a sophisticated
analysis and algorithms developed in works of [Nedialkov, Pryce 2005]. Here on the
contrary we follow a straightforward approach to implicit evaluation of the Taylor
coe¢ cients, based on possibility of conversion of an explicit �rst order system into
an implicit (perhaps singular) n�order ODE. We are interested only in theoretical
outcomes of this evaluation, disregarding possible impracticality of the system-to-
one-ODE conversion.
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2. Evaluation of the Taylor coe¢ cients via an implicit singular ODE

Recall that a system of explicit �rst order ODEs (say in x; y; z; :::) may be
transformed (in many ways) to one implicit polynomial ODE in any of the variables,
say in x :

(7.4) P (t; x; x0; :::; x(n)) = 0

with the polynomial
P (T; X0; X1; :::; Xn):

We are considering an IVP for this ODE x(k)jt=0 = ak; k = 0; 1; :::; n near a
point (0; a0; a1; :::; an) satisfying this ODE and such that

(7.5)
@P

@Xn

����
t=0

= 0

In other words, (0; a0; a1; :::; an) is a point of singularity of the ODE, where the
condition of existence and uniqueness of the solution is violated. In fact there do
exist examples when the solution of (7.4) is not unique.

Example 5. An IVP for the ODE

P = tx0 � x = 0

at t = 0 has in�nitely many solutions x(t) = Ct:

Example 6. An IVP for the ODE

P = tx0 � tx� x = 0

at t = 0 has in�nitely many solutions x(t) = Ctet:

We are to show that the Taylor coe¢ cients of the solution of a polynomial ODE
may be evaluated even in a point of singularity of the ODE.

Consider the following process of di¤erentiating ODE (7.4)

dN

dtN
P (t; x; x0; :::; x(n)) = PN (t; x; x

0; :::; x(n+N)); P0 = P

obtaining an in�nite sequence

P1(t; x; :::; x
(n+1)) =

@P (t; x; :::; x(n))

@Xn
x(n+1) +Q1(t; x; x

0; :::; x(n)) = 0

P2(t; x; :::; x
(n+2)) =

@P (t; x; :::; x(n))

@Xn
x(n+2) +Q2(t; x; x

0; :::; x(n+1)) = 0

:::

PN (t; x; :::; x
(n+N)) =

@P (t; x; :::; x(n))

@Xn
x(n+N) +QN (t; x; x

0; :::; x(n+N�1)) = 0

(7.6)

:::

Observe that the coe¢ cient @P (t; x;:::; x
(n))

@Xn
at the leading derivative in every equa-

tion is the same. In this sequence of �nite di¤erence equations, values x(k)jt=0 =
ak; k = 0; 1; :::; n are known, while values x(n+1); x(n+2); ::: are unknowns. (If
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not the condition of singularity (7.5), all values x(n+1); x(n+2); ::: could be ob-
tained as the unique solutions of the corresponding linear equations). Because of
the singularity at t = 0; the system for unknowns x(n+1); x(n+2); ::: takes the form

(7.7)

Q2(0; a0; a1; ::: an; x
(n+1)) = 0

Q3(0; a0; a1; ::: an; x
(n+1); x(n+2)) = 0

::::
QN (0; a0; a1; ::: an; x

(n+1); :::; x(n+N�1)) = 0
:::

In principle this polynomial system may have no solutions, a unique solution, or
in�nitely many of them. We can not always �nd an expression containing all the
solutions. However any of the solutions may be obtained in the following process.

Consider the �rst equation Q2 = 0 (in only one unknown x(n+1)). If it degen-
erated into a zero polynomial, assume x(n+1) = Cn+1 - an arbitrary constant1.

If it degenerated into a nonzero polynomial of a degree zero, i.e. into a constant
Cn+1(0; a0; a1; ::: an) which is not zero, system (7.7) has no solutions.

Otherwise Q2 is at least a linear polynomial in x(n+1); having at least one root:
generally more than one, say m2 � 1 roots. Choose any of them (or otherwise an
arbitrary value Cn+1) and denote it bn+1:

Proceed to the next equation Q3 = 0, in which again, x(n+2) is the only un-
known, as in the previous one.

If it degenerated into a zero polynomial, assume x(n+2) = Cn+2 - an arbitrary
constant1.

If it degenerated into a nonzero polynomial of a degree zero, i.e. into a constant
Cn+2(0; a0; a1; ::: an; Cn+1), set it to zero introducing a polynomial relation
Cn+2(0; a0; a1; ::: an; Cn+1) = 0, meaning that the previous constant(s) Cn+1
must satisfy this relation (instead of being arbitrary). If it is impossible to satisfy
this relation, the previously made choices of the roots or arbitrary constants can
not comprise the solution of system (7.7).

Otherwise this polynomial equations is at least linear and has m3 � 1 roots.
Choose any of them (or otherwise an arbitrary value Cn+2) and denote it bn+2, and
so on.

This way we will obtain a sequence a0; a1; ::: an; bn+1; bn+2:::, in which some
bn+N are arbitrarily picked values, while others are one of several roots of the
respective polynomials. (Indeed, earlier obtained or chosen values bn+1; bn+2:::
a¤ect the properties of all the subsequent equations QN = 0; making the set of all
the solutions quite sophisticated).

Conclusion 1. The �nite-di¤erence system (7.7) has a unique solution if all
equations (7.7) are higher than zero degree polynomials each being:

� either linear in the leading unknown,
� or non-linear, but having only one multiple root.

Does every (of many possible) solutions of this �nite-di¤erence system generate
an analytical element satisfying the source ODE (7.4)? The positive answer is given
by the following

1In examples 3, 4, one of equations (7.7) does degenerate into a zero polynomial.
Generally on the following steps this constant may be required to satisfy a relation (instead

of being arbitrary).
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Lemma 2. If a solution of the �nite di¤erence system (7.7) generates a Taylor
expansion (an analytic element) having a nonzero convergence radius, this analytic
element is indeed the solutions of the singular IVP (7.4).

Proof. Assume we obtained a �nite di¤erence solution bn+1; bn+2; :::of system
(7.7) so that a0; a1; ::: an; bn+1; bn+2; ::: are values of the derivatives de�ning a
holomorphic solution y(t). Substitute y(t) into the sequence of equations (7.6) not
expecting that they are necessarily satis�ed by y(t) so that P (t; y; y0; :::; y(n)) =
"(t): Observe that all "(N)(0) = PN (t; y; y

0; :::; y(n+N))
��
t=0

= 0; N = 0; 1; 2; :::
due to the method of obtaining the values bn+1; bn+2; :::: Therefore "(t) � 0 so that
y(t) is in fact a solution of IVP (7.4). �

Example 7. At t = 0 all equations (7.7) for the function

x(t) =
et � 1
t

; x(0) = 1

satisfying the singular IVP for the ODE

P = tx0 � tx+ x� 1 = 0
are linear in the leading unknown:

dNP

dtN

����
t=0

=
h
tx(N+1) +Nx(N) � tx(N) �Nx(N�1) + x(N)

i
t=0

= QN =

= (N + 1)x(N) �Nx(N�1) = 0;

x(N)
���
t=0

=
1

N + 1

so that x(t) is a unique solution of this singular IVP.

Example 8. The same is true for the IVP

P = tx00 � x = 0; x(0) = 0; x0(0) = 1;

dNP

dtN

����
t=0

=
h
tx(N+2) +Nx(N+1) � x(N)

i
t=0

= QN+1 =

= Nx(N+1) � x(N) = 0;

x(N)
���
t=0

=
1

(N � 1)! ; N � 1;

Conclusion 2. Switching from explicit equations to the implicit ones in recur-
sive evaluation of n�order derivatives is what makes the di¤erence between Taylor
expansions at points of elementariness vs. Taylor expansions at points-suspects of
being non-elementary.

Conclusion 3. A Taylor expansion at any point of elementariness may be
generated by the explicit canonical equations and the formulas of di¤erentiation
(1.3-1.5). An expansion generated by an algorithm not belonging to this class is
therefore a suspect for representing a function non-elementary at the point. In
order to establish non-elementariness at the isolated point, it must be proved that
the sequence can not be generated by any system of canonical equations. However no
such example is yet known. (The Gamma function and integral are non-elementary
in all point of their domain of existence).





CHAPTER 8

Open questions

Elementary functions as a sub-class of holomorphic functions give some new
insights into the holomorphic functions in general. On the one hand, elementary
functions outline a sub-class of holomorphic functions which are constructively com-
putable (via integration of ODEs as a tool of analytic continuation).

On the other hand elementary functions introduce a �ner distinction into types
of special points: special points among the holomorphic points. We have learned
that in the Gamma function all regular points are non-elementary.

As to the special point t = 0 in functions like sin tt ;
et�1
t and similar, we can not

yet make such claim. We only know that they can not satisfy any regular n�order
polynomial ODE [Gofen 2008, Flanders 2007] - not enough to claim that they are
non-elementary at t = 0:

However, what are the reasons for accepting exactly De�nitions 1, 2 of elemen-
tariness based on �rst order explicit systems of ODEs? Why not to consider the
following two modi�ed de�nitions.

Definition 3. (Stand alone weak elementariness) Function u(t) is called stand
alone weak elementary if it satis�es some implicit polynomial ODE

P (t; u; u0; :::; u(n)) = 0

(no matter regular or singular at a particular point).

Due to possibility of system-to-one-ODE conversion (Theorem 4, section 5.2),
this class of weak elementary functions widens De�nitions 1, 2. In it the Gamma
function is non-elementary, however the functions sin tt ;

et�1
t and similar are uncon-

ditionally weak-elementary everywhere: no distinction is made for the point t = 0
despite the fact that integration into it is impossible.

Definition 4. (Stand alone elementariness) Function u(t) is called stand alone
elementary at the point t = t0 if it satis�es some implicit polynomial ODE

P (t; u; u0; :::; u(n)) = 0

or explicit rational ODE both regular at t = t0.

This de�nition is formally more narrow than De�nitions 1, 2, because a regular
n�order ODE trivially converts to the �rst order system, but not vice versa. If the
De�nitions 1, 2 were just abandoned in favor of the stand alone elementariness, the
Main Theorems for example could not be reproved by the available methods.

That is why De�nitions 1, 2 seem to be the most proper in the moment. If the
Conjecture [Gofen 2008] is true, the equivalency between an n�order polynomial
ODE and a system of �rst order explicit ODEs does take place (in the sense ex-
plained in the chapter De�nitions), hence the stand-alone-elementariness becomes
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equivalent to the De�nitions 1, 2. This fact too underlines the importance of solving
the Conjecture.

Finally, here is a proof for a particular case of the Conjecture for m = 2.
Here the Conjecture is formulated for the source system converted into the form of
squares only - without violation of generality due to the Fundamental Transforms.

Conjecture 1. For every component (say u1) of the IVP for polynomial sys-
tem in squares only(

u0k =
mX
i=1

akiu
2
i ; ukjt=t0 = bk; k = 1; :::; m

there exists a regular IVP for n�order rational ODE

u(n) =
P (t; u; u0; :::; u(n�1))

Q(t; u; u0; :::; u(n�1))
; Q(t; u; u0; :::; u(n�1))

���
t=t0

6= 0

having u1 as a unique solution.

Proof. (For m = 2 only). Consider a system

x0 = a1x
2 + b1y

2

y0 = a2x
2 + b2y

2:

If b1 = 0; the target ODE is x0 = a1x2: Now assume b1 6= 0:
x0 = a1x

2 + b1y
2; y2 = (x0 � a1x2)=b1

y0 = a2x
2 + b2y

2; y0 = a2x
2 +

b2
b1
(x0 � a1x2)

Looking at y0, observe that all derivatives y(n) depend on x and its derivatives
only, and they may be expressed as polynomials Gn: y(n) = Gn(x; x

0; ::: x(n));
n = 1; 2; ::: Utilizing this, di¤erentiate the �rst equation:

x(n+1) = a1(x
2)(n) + b1(y

2)(n) =

= a1(x
2)(n) + 2b1(yy

(n) + ny0y(n�1) + :::)

= a1(x
2)(n) + 2b1(yGn + nG1Gn�1 + ::::); n = 1; 2; :::

Now observe that y occurs only in one monomial: that with factorGn(x; x0; ::: x(n)):
If at least one Gnjt=t0 6= 0; y may be eliminated and substituted in the following
equations, so that we can obtain in�nitely many rational ODE�s in x regular at
t = t0: Otherwise, if all Gnjt=t0 = y(n)jt=t0 = 0; n = 1; 2; :::; then y must be a
constant so that the �rst ODE depends only on x. That concludes the proof. �

Unfortunately, for m > 2 this method of proof does not work, nor does it work
for m = 2 with addition of mixed or linear monomials in the ODEs.
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