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A cross-platform application called the Taylor Center implements advanced user interface and 2D or 3D stereo 
dynamic visualization of the solution. It integrates ODE's using the Modern Taylor method, having unlimited 
order of approximation, finite step, and high accuracy, allowing to explore or export the solution in different 
formats. Designed in Delphi-6, the package implements a powerful Graphical User Interface, and is portable to 
windowed versions of Linux too. 

 
Introduction 
 

    What we expect from an application with 
advanced interactive visualization is: 

 
 (a) User interface whose style, controls, and 

handlers fit best for the specific model and 
operational tasks; 

 (b) Realistic visualization of the modeled 
process employing all appropriate faculties of the 
human perception, achievable with advanced 
hardware and multimedia. 

 
    With that in mind we consider a general 

purpose program called the Taylor Center, which 
performs integration of initial value problems for 
systems of Ordinary Differential Equations 
(ODE's) [7,8]. Unlike earlier packages [1,2], this 
sophisticated Taylor Solver is designed for PCs as 
an interactive application with extensive Graphical 
User Interface. Moreover, it was developed in a 
programming environment which exemplified the 
Visual programming and made its good name: the 
Borland's Delphi (a dialect of Pascal having such 
advance features as dynamic arrays, objects, and 
sophisticated graphics). Actually the software may 
be considered as a cross platform Windows/Linux 
project because Borland offers also a Linux 
implementation of Delphi (called Kilex). 

    Although not any mathematical object may be 
readily visualized, the solutions of ODE's are, as 
their geometrical interpretation is trajectories in 
Euclidian space En (planar curves for n=2). In a 
computerized world we can expect not just still 
images of trajectories, but also real time animation 
of the motion along them, and we can even expect 
visualization for n=3 too. 

    This All-In-One application is called the 
Taylor Center (according to the metaphor of a 
"Music Center") because it offers an interactive 

environment, where researchers can input (import) 
ODE's in symbolic format, vary the parameters, 
explore the Taylor expansions and their 
convergence radius, integrate the equations with 
high accuracy (up to all available float point digits), 
store or export the results, graph the solutions and 
"play" them dynamically as bullet trajectories in 
real time animation. The feature making this 
application unique is that it can display non-planar 
3D trajectories as anaglyphic stereo viewed 
through Red/Blue glasses [6,7]. In particular, it 
implements a 3D cursor (controlled by a 
conventional mouse). This cursor with "tactile" 
audio feedback allows users to "touch" points of 
non-planar curves hanging in thin air, while 
viewing the current 3D coordinates. Here the 
multimedia is employed in its full capacity 
(especially because of the stereo viewing – not yet 
ubiquitous in the computer world). 

 
Particularities of the 3D visualization 
 

    The perspective drawing of 3D world 
(isometry) is known for a couple of centuries. 
Human imagination easily interprets perspectively 
correct planar images of common objects, 
especially those with strong perspective cues, but 
that is not always the case, and then human 
capability of stereo perception and tools for stereo 
vision come to play. 

    Stereo vision is a powerful ability of our brain 
to recreate an image of 3D scene1 "fusing" the two 
planar images received by the eyes [3, 6]. Mental 
image of 3D space belongs completely to the realm 
of imaginary sensations, because there is no place 
in our body where any kind of 3D replica of reality 
is materialized. The only physical replica we do 

                                                        
1 Mathematically speaking, recreation of the 3D scene 

from a pair of 2D images is not a well defined 
problem, and it may have multiple solutions.    



have is the two planar images on the retina of our 
eyes. 

    The real excitement of the 3D vision happens 
when we look at objects expected to be planar (a 
screen, a hologram), but the brain suddenly 
discovers a 3D scene in it, popping out from the 
planar surface or shifting back into the depth. 

    This is the 3D Stereo Vision, or the real 3D – 
not to be confused with the misnomer "3D 
Graphics" used for video cards and video libraries. 
This misleading term emerged when the game and 
video technology switched from simplistic 
projections (known as front, side and top views in 
drawing) to a more advanced oblique projection of 
3D scenes. Photos, isometric drawings, artistic 
paintings (if their perspective is correct) all are 
examples of such projection. When we look at 
them, we perceive them exactly as planar 2D 
projections of 3D reality2.  

    We have all become good at "reading" these 
projections and understanding the 3D reality they 
represent. Such projections were the closest we 
could come to 3D imagery until invention of the 
stereoscope in 19th century in Great Britain. 

    The two eyepieces of a stereoscope deliver 
the two planar images of a stereo pair directly to 
the respective eyes. Then a miracle occurs: viewers 
perceive the 3-dimesionality of the scene as real – 
so real that they wish to touch the objects hanging 
in air. This never happens when we look at 2D 
projection of the 3D world. 

    After the stereoscope, many other techniques 
were developed for displaying 3D stereo images 
[4]. Except for the holograph, they all use the same 
basic principle as the stereoscope: to deliver each 
of the two images of a stereo-pair to the proper 
(and only to the proper) eye. On the contrary, the 
holographic equipment completely reproduces the 
3D light front, i.e. the 3D vector field of the same 
electromagnetic waves that would be reflected by 
the 3D scene if it were really there. Thus a 
hologram creates a sculptural "ghost" in the real 
world as a physical phenomenon – a 3D scene we 
view by a pair of eyes, while a stereo pair creates 
this scene in our mind – an ultimate addressee 
anyway. Another fundamental difference is in the 
                                                        
2 Binocular viewing of a perspectively correct planar 

image creates perception of a planar drawing only: 
isometric or not, yet in a plane. That is because this 
plane is the solution corresponding to the 3D reality 
encoded in this stereo pair. Surprisingly enough, if the 
same isometry is viewed by one eye at the 
perspectively correct distance, with a little effort the 
brain does generate the stereo perceptions of this very 
scene reconstructing it out of the perspective cues – a 
phenomenon called monocular stereopsis. 

quantity of information: a stereo pair is just two 
planar images, while a hologram encodes (almost) 
infinity of them. 

    Does the stereo vision give some advantages 
vs. a planar perspective projection of a 3D scene? 
The isometrics (or photo-imaging) suffice in many, 
but not in all situations. In displaying such objects 
as scenes with rectangular shapes, bodies with 
edges, skeletal structures, scenes with good 
perspective cues or with reflection hints, isometry 
is good enough. For them, the stereo viewing only 
adds certain excitement in perception. 

    Yet the isometrics works poorly for smooth 
surfaces without edges (smooth 2D manifolds). For 
example, to perceive a picture of a sphere or a 
torus, we additionally draw grids on their surfaces, 
or special shadows and reflections. The 2D 
projections become especially inefficient while 
visualizing non-planar curves (1D manifolds) – and 
that is what solutions of ODEs are. For example, 
trajectories of space probes launched to planets of 
Solar system are usually non-planar. To draw them 
in conventional isometry we need to add several 
auxiliary planes and referencing coordinate lines. 
The real stereo viewing eliminates necessity in all 
auxiliary hints (see the 3D demo samples). Thus, 
displaying non-planar solutions of ODEs in 3D 
stereo dramatically improves the perception3. 

    This particular software employs the cheapest 
technical realization of stereo vision, known as 
anaglyph stereo, which requires nothing more than 
a conventional PC monitor plus cardboard glasses – 
the cheapest gear possible [6]. The two images of 
an anaglyphic stereo pair must be monochromatic – 
each in a different color (one of the basic 
Red/Green/Blue set). The Red/Blue pair is better 
because their spectrums are farther away from each 
other and better separable. When you look through 
the Red/Blue glasses at the Red/Blue images of a 
stereo pair that overlap on a screen, each eye 
receives only the proper image of the stereo pair. 

    How does the brain fuse stereo pairs 
presented in different colors? After all it evolved 
and is trained to match corresponding elements of 
stereo pairs, and the corresponding elements must 
be of the same color indeed. 

    Fortunately, the brain follows not a "rigid", 
but rather a "flexible" algorithm. Certain neurons 
fire if they find out recognizable elements in the 
image disregarding their colors, while the others 

                                                        
3 There are many other cases when stereo viewing 

becomes essential, being implemented in various 
equipment from micro- to telescopes [4]. For example it 
is used to visually detect counterfeit bills, or changes in 
aerial photos of landscapes. 
 



fire if these elements happen to comprise a 
"meaningful" stereo pair. The signals of those 
"stereo-specialized" neurons dominate. As a result 
we easily fuse the 3D scene in spite of the fact, that 
each eye sees it in a different color. This works 
well both on a PC monitor for a single viewer, and 
with a screen projector for a large audience. 

    The modern technology nowadays offers a 
variety of other technical solutions with completely 
uncompromised stereo viewing. 

 
Particularities of the integration method: 
more than tabulated functions 
 

    The method of integration implemented in 
this software is the modern Taylor method – to be 
distinguished from its classical counterpart in that 
the process of n-order differentiation was 
optimized and made feasible due to the concepts of 
Automatic Differentiation (AD) and (generalized) 
elementary functions [5]. 

    Among other methods of integration, the 
Taylor method is situated somewhere between 
purely numerical methods and symbolic 
integration. However, unlike purely numeric 
methods, it delivers not only tabulated values of 
unknown functions in point of interests, but also 
their derivatives up to any specified order (default 
30) and convergence radius at every point. And 
unlike symbolic integration, the Taylor method 
applies not only to very limited list of ODEs 
solvable in quadratures, but to any ODEs in regular 
points of the phase space. 

    From the programmatic point of view, any 
Taylor solver differs from conventional integrators 
in that the input – an Initial Value Problem for 
ODEs – should be provided not simply as a 
subroutine computing the right hand parts, but 
rather as arithmetic expressions themselves of 
those right hand parts in order to enable automatic 
differentiation (understood as optimized classical 
formulas for n-th order derivatives applied to 
sequences of basic expressions). 

    Correspondingly, the output and interaction of 
a Taylor solver with other applications has its 
specifics too. The result is not just tabulated values 
of the solution, but rather its expansion into the 
Taylor series (analytical elements), or a sequence 
of such elements (although the tabulated solution 
may be exported also). 

 
The tasks and environment at a glance     
 
This section walks you through the basic features 
of the Taylor Center, pre-loaded with fascinating 
classical problems. You will be able to "play" them 

in real time animation, to experiment with a 3D 
cursor, and to study effects of specific parameters. 
To install the program [8], unzip it into an empty 
folder of your choice and run TCenter.exe. To try 
first what makes this program unique, begin with 
the 3D stereo and have Red/Blue glasses ready. 

    Go to Demo/Three Bodies/Disturbed/3D in 
the menu. The compilation script runs and ends 
with a message "Compilation successful", 
displaying a knotty Red and Blue curves. Now put 
on your anaglyphic glasses (over those you usually 
use, if any) and maximize the Graph window. 

    What you hopefully perceive looks like a 
"fishing line" hanging in thin air between the 
monitor and your face. These are trajectories of 
three bodies moving under gravitational pull. More 
specifically, this is the so called disturbed Lagrange 
case. (See Lagrange case proper under Three 
Bodies/Symmetrical). This "fishing line" is a result 
of small disturbances applied perpendicularly to the 
initial plane (the plane of your screen). 

    However the program is capable of producing 
something more than "still life". Click the Play 
button, initiating real time 3D stereo motion of the 
bullets representing the three bodies, and watch 
how they accelerate, decelerate, and couple. 

    When they come to rest, you may try 
exploring the elements of the trajectories with a 
"tactile" 3D cursor. Move it into the scene, where it 
will transform into a small cross. The mouse 
always moves the stereo cursor in a plane parallel 
to the screen. To control its depth, use the mouse 
wheel. (If the mouse wheel is not available, move 
the mouse keeping depressed either Ctrl key to 
bring the cursor closer to your eyes, or Shift key – 
to move it away from you). Current 3D coordinates 
of the cursor always appear at the top window 
panel. 

    Now, controlling the 3D cursor, try to touch 
one of the trajectories in space with it. Switch the 
speakers On, and you will hear a clicking sound 
when the touch occurs: this is the so called "tactile" 
audio feedback, helping to explore points of 
interest in the curves. 

    You can rotate the curves in the space with 
the Turn controls. Given specific sizes of the 
parallelepiped, you may notice that the front side 
(controlled by MaxZ value) keeps the curves inside 
the parallelepiped "flattening" them. (Therefore 
increase MaxZ). 

    Already familiarized with the 3D stereo 
features of the package, you may try several other 
problems. Click Main Panel in the menu to re-
visualize the main form, and go to Demo/Four 
Bodies. The two pairs of bodies with equal masses 
are all initially placed in a horizontal plane, parallel 



to your desk (perpendicular to the screen). The 
horizontal components of the velocities provide 
near circular motion for each coupled pair, while 
the small vertical components push the two pairs 
into a large circular motion around the center of the 
masses (see the initial values in the Main window). 
At the beginning the trajectories spin into a braid 
looking as though they outline a torus (like the tiny 
braided rings of Saturn discovered by the Voyager 
probe). However this braid actually does not 
outline a torus: you can notice that both coupled 
pairs preserve their initially horizontal plane. 

    Another fascinating example of 3D motion is 
under Demo/Möbius. You can watch 4 bullets lined 
up in a straight line whose motion outlines a 
Möbius surface winded 1.5. To get the simplest one 
(winded 0.5), change value of n=0.5 (in Constants), 
Compile, click button Previous (in Graph setting 
page), click Clear in Graph window, and finally 
click the More button. 

    You can explore several more 3D stereo 
examples opening their scripts. Click the Main 
Panel and go to File/Open script menu item. Here 
are files producing 3D stereo images: 

    PendulumApple.scr, PendulumFlower.scr 
(spherical pendulum); 

    KnotChain3D.scr, TrefoilKnot3D.scr; 
    MobiusLarge.scr; 
Beside 3D stereo samples, there are also 

instructive examples in 2D, such as the recently 
discovered eight-shaped solution of the three body 
problem called "Choreography" (in Three 
Bodies/Choreography). Under File/Open script 
there are also two more classical examples in 
celestial mechanics: the Euler case with the bodies 
of equal masses (3EqBodEuler.scr) and the case 
when one mass is near zero (3NonEqBodEuler.scr). 
There are also scripts for single and double 
pendulums, and the Four body Lagrange case 
(4BodiesPlane.scr). 

 
Conclusions  
Summarizing all the features, with the current 
version of the Taylor Center users can: 

• Specify and study the Initial Value Problems for 
virtually any system of ODE's in the standard 
format of explicit 1st order ODE's with numeric 
and symbolic constants and parameters;  

• Perform numerical integration of Initial Value 
Problems with the high accuracy (up to all 
digits of 64-bit mantissa), while the step of 
integration remains finite and does not approach 
zero (because the order of approximation is 
high: by default 30, or higher). 

• Obtain the solution as a set of analytical 
elements – Taylor expansions covering the 
required domain, exportable to other systems 
either as is, or in tabular format; 

• Study Taylor expansions and the (heuristic) 
radius of convergence for the solution at all 
points of interest (with the only limitation that 
the terms in the  series do not exceed the 
maximum value of about 104932 implied by the 
10-byte implementation of the real type 
extended);  

• Perform integration either "blindly", or 
graphically visualized; either a given number of 
steps, or until an independent variable reaches a 
terminal value, or until a dependent variable 
reaches a terminal value;  

• Switch integration between several versions of 
ODE's defining the same trajectory with respect 
to different independent variables. For example, 
it is possible to switch the integration by t to 
that by x or y in order to reach the terminal 
value (or zeros) of the dependent variable;  

• Integrate piecewise-analytical ODE's;  

• Specify different methods of controlling the 
accuracy and the step size;  

• Specify accuracy for individual components 
either as an absolute or relative error tolerance, 
or both;  

• Graph color curves (trajectories) for any pair of 
variables of the solution up to 7 on one screen, 
either as plane projections, or as 3D stereo 
images to be viewed through anaglyphic 
(Red/Blue) glasses. The 3D cursor with audio 
feedback (controlled by a conventional mouse) 
enables "tactile" exploration of the curves 
literally "hanging in thin air";  

• "Play" dynamically the near-real time motion of 
bullets along the computed trajectories either as 
2D or 3D stereo animation;  

• Graph a field of directions with a grid of short 
lines or curves of variable length; 

• Explore several meaningful examples supplied 
with the package such as the problem of Three 
or Four Bodies, "Choreography". Symbolic 
constants and expressions parameterize the 
equations and initial values making it possible 



to try different initial configurations of special 
interest.  

The current kernel version may be further 
developed in different directions (Fig 1):  

- To implement other types of arithmetic (complex 
numbers, intervals);  

- To generate compileble code in Assembler or in a 
high level language; 

- To simultaneously integrate an array of Initial 
Value Problems;  

- To compute derivatives by parameters.  

- To implement special loops and array variables 
(to automate expressions of high complexity in 
the right hand sides such as sums of many 
terms).  
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Fig 1. The outline of the Taylor center kernel. The source ODE's, symbolic constants and initial values are entered in 

editor boxes or from a file. The interactive environment controls how to integrate, what to graph, and what to export. 
The dotted boxes represent features possible in future developments.    


