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Abstract

This library of simulations utilizes an advanced ODE solver called
the Taylor Center capable to integrate initial value problems with high
accuracy and to display solutions as real time animation in 2D and 3D
stereo (viewable via red/blue glasses).

These unique graphical features and the user friendly interface provide
the environment of a virtual laboratory allowing to observe the important
dynamic behavior of the problems gathered in the library, and to experi-
ment modifying the initial values - as though during the real life laboratory
work.

This �rst issue of the Exploratorium deals with the various type of
motion of a rolling disk (as a special case of the motion of a rigid body).
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Rolling disk
Folder: RollingDisk.

The ODEs in the mathematical form

The ODEs (156), (159) in [1] obtained by Dmitry Garanin for a rolling disk are:
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We re-wrote them using the expression for L3 into a system containing all Euler
angles �; �;  :
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Typically the solid body motion equations are written in the rotating system

of coordinates [2] which is �xed with the rotating body. Dmitry Garanin trans-
formed them into the laboratory system, where the disk position is expressed
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via the Euler angles �; �;  (the picture on page 24 in [1]). The meaning of
these angles is easy to explain in a case of a uniform motion of a declined disk
along a circular line:

� is the angle of decline of the disk to the plane ( _� being a velocity of change
of this decline during non-uniform motion);

_ is the angular velocity of the intrinsic rotation of the disk around its axis
perpendicular to the disk at its center;

_� is the angular velocity of the node line - the line of intersection of the disk
plane and horizontal plane. In particular, if a disk is positioned perpendicularly
to the plane and spins around its diameter perpendicular to the plane, _� is the
angular velocity of this rotation.
As explained in [1],

L3 = I 03(
_ + _� cos �) (2)

is a component of angular momentum.

Remark 1 In the literature on this topic, the meaning of _� and _ may be vice
versa of that used here and by Garanin in [1].

Remark 2 This system of ODEs requires the initial values for �; _�; �; _�;  ; L3; xc; yc
at t = 0: However, considering the known equation for L3 (2), L3 and _ are
related. If we specify one, we automatically get the other. Therefore in some
cases we specify L3jt=0, in others it�s more convenient to specify _ jt=0 instead.

We are going to consider the following groups of cases.

1. Examples visualizing the meaning for each of the angular velocities _�; _�; _ 
(folder EachAngleActions);

2. The special cases of uniform motion when �; _�; _ remain constant (folder
UniformMotion). The subcase when the center of the disk remains still
during the motion - the so called Euler disk [4].

3. Examples of interesting dynamic from Dmitry Garanin [1] (folder Gara-
ninExamples);
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Notation in the software

_� te1
�� te1�
_� �1
�� �1�
 psi
_ psi1
L3 L3
xc xc
yc yc
zc zc
I 01 i11
I2 i2
I 03 i31

�x ksix
�y ksiy
�z ksiz
Fx Fx
Fy Fy
� Pi
�=5 Pi5
�jt=0 te0
_�jt=0 te10
�jt=0 �0
_�jt=0 �10
I 01 i11
I 03 i31
L3jt=0 L30

Method of visualization

We achieve visualization of the moving disk via setting 11 trajectories

fx0; y0; z0g
:::

fx9; y9; z9g
f�x; �y; �zg

(see the pageGraph setting in the Main window of the program). Here fxi(t); yi(t); zi(t)g
represent 10 evenly placed �xed points at the edge of the disk. For them only
their motion is displayed not plotting the trace of the motion (no plotted tra-
jectories), while f�x; �y; �zg represents the trajectory of the Contact Point,
and this trajectory is plotted. (This is achieved due to the parameter Lines and
solid body/Plot beginning with the curve # 11).

Equations in the software

Script �le: L3Declined1.scr

The constants.

Pi = 3.141592653589793238462643
p5 = Pi/5
M = 1
g=100
R = 1
MR2 = M*R^2
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MgR = M*g*R
i = 1
Fx = 0
te0 = 0.5
te10 = 0
i2 = i/2
�0 = Pi/2 {�(0)}
i11 = i/2 + MR2 {i1�}
i31 = i + MR2 {i3�}
L30 = 10
�10 = (L30 - sqrt( L30^2 + 4*i2*MgR * (cos(te0))^2/sin(te0))) / (2*i2*cos(te0))

The Initial values

t = 0
te = te0
� = �0
Psi = 0
te1 = te10 {te�(0)}
�1 = �10 {��(0)}
L3 = L30
xc = 0
yc = 0

Auxiliary variables

coste = cos(te)
sinte = sin(te)
cos� = cos(�)
sin� = sin(�)
cospsi = cos(psi)
sinpsi = sin(psi)
cos�coste = cos�*coste
sin�coste = sin�*coste
te1sinte = te1*sinte
�1coste = �1*coste
zc = R*sinte {Center of mass z}
ksix = xc + R*coste*sin� {Contact point on plane x }
ksiy = yc - R*coste*cos� {Contact point on plane y}
ksiz = 0 {Contact point on plane z}
cospsi1 = cos(psi + p5)
sinpsi1 = sin(psi + p5)
cospsi2 = cos(psi + p5*2)
sinpsi2 = sin(psi + p5*2)
. . . . .
cospsi9 = cos(psi + p5*9)
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sinpsi9 = sin(psi + p5*9)
x0 = xc + R*( cos�*cospsi - sin�coste*sinpsi ) {a �xed point at the edge

of the disk, x}
y0 = yc + R*( sin�*cospsi + cos�coste*sinpsi ) {a �xed edge point y}
z0 = zc + R*sinpsi*sinte {a �xed point at the edge of the disk, z}
. . . . .
x9 = xc + R*( cos�*cospsi9 - sin�coste*sinpsi9 )
y9 = yc + R*( sin�*cospsi9 + cos�coste*sinpsi9 )
z9 = zc + R* sinpsi9*sinte

ODEs

t�=1
te�= te1
��= �1
Psi�= L3/i31 - �1coste
te1�= ( (i2*�1coste - L3)*�1*sinte - MgR*coste + Fx*R*sinte*sin� )/i11
�1�= (L3 - (i11 + i2)*�1coste)*te1/(i2*sinte)
L3�= MR2*te1sinte*�1 - Fx*R*cos�
xc�= R*(te1sinte*sin� - L3*cos�/i31) {Center of mass x}
yc�= -R*(te1sinte*cos� + L3*sin�/i31 ) {Center of mass y}

Visualizing the meaning for each of the angular
velocities _�; _�; _ 

(folder EachAngleActions)

The meaning of _ :

Let�s begin with the intrinsic rotation of the disk with velocity _ . To isolate
this motion, we set the declination of the disk �jt=0 = �=2 (perpendicularly to
the plane) and _�jt=0 = _�jt=0 = 0:
Load script �le PsiOnlySpinVert.scr and click the Play button.
Watch the disk rolling with the angular velocity _ = const = 10 (psi10=10)

in vertical position with uniform speed along the straight line rolling.
If the initial declination of the disk �jt=0 is not perpendicular, even with

initial velocities _�jt=0 = _�jt=0 = 0 they will not remain zero (which we want in
order to watch only _ e¤ect).
We cannot set declination �jt=0 = 0 because sin � is in the denominator of

the equation for �1�. We can watch however the motion when �jt=0 is near zero.
Load script �le PsiOnlySpinNearHoriz.scr and click the Play button.
Watch the disk rolling near horizontally with intrinsic angular velocity _ 

near 30 along a circular curve (though not a circle). The declination of the disk
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slightly varies. In order to see that, click Graph setting tab in the main window.
While there, click 2D button (which clears the set of trajectories). Now specify
the curve te(t). In order to do it, �rst click intersection of t with X axis, and
then click the intersection of te with Y axis. That would set the curve {t, te}.
Now click Graph. It will show you a sine-like wave of variation of the declination
between 0:08 and 0:1 of radian.

The meaning of _�:

This is velocity of precession, i.e. angular velocity of the node line. To isolate
this motion, we set the declination of the disk �jt=0 = �=2 (perpendicularly to
the plane) and _ jt=0 = _�jt=0 = 0:
Load script �le FiOnlySpin.scr and click the Play button.
Watch the disk spinning around the vertical diameter with the angular ve-

locity _� = const = 10 (�10=10).

The meaning of _�:

This is velocity of the change of declination � of the disk: To isolate this motion,
we must set _ jt=0 = _�jt=0 = 0: In doing so, if we leave declination of the disk
�jt=0 = �=2 perpendicularly to the plane, no motion may happen as this is a
position of equilibrium (though unstable). In order to trigger the motion, we
must either provide a small push _�jt=0 = 0:01; or set the initial declination of
the disk slightly less than �=2: Let�s try both.
Load script �le TetaOnlyFall.scr (with a small push _�jt=0 = 0:01) and click

the Play button.
The disk starts falling slowly, accelerates, and ... What?! It falls through

the plane as though the plane didn�t exist, continuing its motion as though a
rigid pendulum.
You can see the same paradox loading script �le TetaOnlyFallPendulum.scr

(with a �jt=0 = �=2�0:01; all angular velocities being zero). Again you will see
the behavior of rigid pendulum, but now swinging back and force disregarding
the plane.
The explanation of this paradox is that with _ � _� � 0 (and Fx = 0) the

�rst ODE of the system (1) really turns into the equation of a pendulum

�� = �MgR cos �

I 01
(3)

written for an angle complementary to �=2 so that we have cosine instead of sine
(as in the standard pendulum ODE). The ODE (3) describes also the motion
of a disturbed vertical stick or vertical ladder falling down presuming that such
a stick-like object is �xed with a hinge as a pendulum and moves disregarding
"obstacles" such as horizontal plane.
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Now load script �le TetaOnlyFallWithSmallFi.scr where we added only a
negligible initial angular velocity _�jt=0 = 0:001 around the vertical diameter of
the disk: can such a negligible addition change the "free pendulum" behavior
of the disk which falls not "noticing" the plane? Click the Play button.
Amazingly, now the disk does not fall and swing as a pendulum any more,

but fully "acknowledges" the existence of the plane, rolling along a cycloid-like
curve: almost �at falling and then standing up again, on and on!
Load TetaOnlyFallWithSmallFiLong.scr and watch a longer period of such

motion noticing that the cycloid-like curve outlines some large circle.
Well, then how does a small intrinsic spin _ a¤ects the free fall of the disk?
Load script �le TetaOnlyFallWithSmallPsi.scr where we added only a negli-

gible initial angular velocity _ jt=0 = 0:001 around the axis of the disk: can this
negligible addition change the "free pendulum" behavior of the disk ignoring
presence of the plane? Click the Play button.
Now the disk also does not fall through as a pendulum any more. Again

it "acknowledges" the existence of the plane, but rolls along a sine-like curve:
almost �at falling and then standing up again, on and on!
Load TetaOnlyFallWithSmallPsiLong.scr and watch a longer period of such

motion noticing that now this sine-like curve outlines a straight line (rather than
circle).

Conclusion 3 If the disk in the initial (near) vertical position has zero angular
velocities _ and _� so that its interaction with the plane takes place only via
one point at the initial position, there are no forces which change its free fall
as a rigid pendulum which ignores existence of the plane. However, one of the
velocities _ or _� being nonzero does cause the disk to move away from the initial
point of touch along some curve. It�s the forces of reaction of the plane at points
of this curve which turn the disk changing its motion so that the disk stays above
the plane touching it along the curve of touch.

One more observation of a technical nature.

Remark 4 In the case TetaOnlyFall.scr of free fall, the declination �; beginning
with �=2; goes down bypassing the zero value. However, the 2nd of the ODEs
(1) contains sin � in the denominator. In most cases an attempt to integrate
bypassing a point of singularity of the ODE fails no matter whether the solution
is regular or not at this point - and with the initial values of this case the solution
is regular when � = 0. It is because of the regularity of the solution and small
values of its Taylor coe¢ cients the program applies such a large integration step,
that by mere chance it bypasses the point where � = 0 so that the integration
succeeds.
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The special cases of uniform motion when �; _�; _ 
remain constant

(folder UniformMotion)
Intuitively we can imagine such a physical setting that the disk rolls along

the circumference with constant decline � < 90� and constant angular velocities
_�; _ in such a way that the centrifugal force is compensated with the horizontal
component of weight force. We are to demonstrate, that such a solution of the
system (1) does exist. We assume, indeed, that Fx = 0 (no external horizontal
forces).
Observe that if �(t) = const; _� = 0 and _ = 0 satisfy the system, then also

L3 = I 03(
_ + _� cos �) = const. With that in mind, we see that the equations for

��; _ ; and _L3 are satis�ed having zero right hand sides. As to the ODE for ��,
let�s set a condition that the right hand side be zero:�
�L3 + I2 _� cos �

�
_� sin ��MgR cos � = I2 _�

2
cos � sin ��L3 _� sin ��MgR cos � = 0:

Solving this square equation in _�, we get

_� =
L3 sin � �

q
L23 sin

2 � + 4I2MgR cos2 � sin �

2I2 cos � sin �

or

_� =
L3 �

p
L23 + 4I2MgR cos2 �= sin �

2I2 cos �
:

Given the fact that all the values in the right side are constants, so is also
_�: Therefore the set of constant functions �;  ; L3 and then the constant _�
computed based on the values of the former, do satisfy the system of (1) of
the source ODEs. Further on, in the examples illustrating this uniform motion,
we will arbitrarily choose the constant values for � and angular momentum L3
obtaining the rest of the initial values by the known formulas.
An interesting sub-case of this uniform motion is the case when the center

of the mass remains still during the disk motion. Examining the ODEs (1) for
_xc; _yc; we see that they may be zero only if the constant L3 = 0: That means
that in order to extract the Euler case from the general case of uniform motion,
we must set L3 = 0 and then getting

_� =
�
p
4I2MgR cos2 �= sin �

2I2 cos �
= �

r
MgR

I2 sin �
:

That�s the initial constant value for _� depending on the decline � for the Euler
case.
To watch the discussed above cases of the uniform motion, from the folder

UniformMotion...
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� Load and play script �les L3Declined1.scr, L3NearVert1.scr, L3NearVert2.scr
displaying uniform motion with the center of the disk moving along a cir-
cle;

� Load and play script �les Euler45.scr, EulerNear90.scr, EulerNearFlat.scr
displaying uniform motion with the center of the disk resting.

See the implementation of the formulas above in the section of Constants
under the tab Equation setting in the front window.

Examples from Dmitry Garanin in [1]

(folder GaraninExamples)
The following exaplanation of the examples comes from the section 4.1.3 in

[1].
Example 1. The parameters of the wheel are set to M = R = I = 1. The

results show that a rolling
wheel never falls on a side in spite of the gravity torque. Rolling with the

rotation around the symmetry axis is pretty stable. Applied force Fx tends
to accelerate the wheel�s motion in the direction of the force. If the wheel�s
initial rotation is very slow, it nearly falls �at but, as � approaches 0 or �, the
rotation dramatically increases so that both _� and _ become large and the sign
of _� gets reversed. During the short nearly-fall time interval both the Center of
Mass (CM) and the contact point assume large velocities and the contact point
makes a bow around the CM. Then the wheel stands up again until the next
fall on one of the sides.
One of the numerical solutions in the nearly falling regime is presented below.
Load and play the script �le NearFlatFall1.scr.
The forces are Mg = 100 and Fx = 0. The initial conditions were xc(0) =

yc(0) = 0, �(0) = �=2, �(0) = �=2 and _�(0) = 0:01, _�(0) = 0, _ (0) = �0:001.
That is, in the initial state the wheel is upright, its plane is parallel to the y-axis
and it begins rolling very slowly in the positive y direction because _ (0) < 0.
However, a small push in the positive x direction, _�(0) = 0:01, together with
the gravity torque cause the wheel to nearly fall �at. The CM begins to move
to the right and almost reaches the surface. But because of the small initial
rotation the derivatives _� and _ strongly increase and the wheel making a fast
rotation with displacement stands up again.
In order to see the changes of the �; �;  load and play the script �le

NearFlatFall1TeFiPsi.scr . It demonstrates �(t) nearly falling and recovering.
� shows that the wheel is rapidly precessing in alternating directions when the
wheel nearly hits the ground, while  demonstrates at those moments how the
wheel is rapidly rotating around its symmetry axis too.

Let us discuss now the motion of of the Center of the Mass (CM) and of the
Contact Point (CP).
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In order to watch the vertical motion of the CM, in the main window under
the tab Graph setting click Clear and specify the curve {t, zc} by clicking �rst
intersection of t and X axis, and then zc and Y axis. Click Graph. Then the
Graph window will display Z(t) and you may Play it to see the dynamic.
Then, in order to watch the horizonal motion of the CM and CP load and

play the script �le NearFlatFall1CMCPi.scr . One can see that as the wheel
nearly touches the ground CP makes a half-circle around CM.

Example 2. This is the same as Example 1 except that now precession1
_�(0) = 0:25. This initial precession causes the CM of the wheel to make cir-
cles.Load and play the script �le NearFlatFall2.scr . _�(0) > 0 also makes the
CP motion of a cycloid type.
Load and play the CM-CP curves only: NearFlatFall2CM-CP.scr .

Example 3. This is the same as Example 1 but adding also a horizontal
force Fx = 0:03 (while leaving _�(0) = 0:25 as in Example 2). Load and play
NearFlatFall3.scr : the external force makes the CM motion of a
cycloid type. Watch it also in a plane version: NearFlatFall3CM-CP.scr .

Example 4. Reversing the sign of the force Fx = �0:03 (with the same
_�(0) = 0:25) completely changes the character of the motion. Load and play
NearFlatFall4.scr .
With a longer time interval, one can see the change of regime after some

time - script �le NearFlatFall4Longer.scr (page 35 in [1]).

Example 5. With all the same but the faster precession _�(0) = 1; the
motion becomes even more complecated - NearFlatFall5.scr .
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