
THE GAP IN THE UNIFYING VIEW NOT YET CLOSED

ALEXANDER GOFEN

Abstract. This article was written in 2022-2023 when I believed as though I
had proved the Conjecture - the gap in the Unifying Theory of the elementary
functions. In February 2023, however, I �gured out an error in one step of the
proof so that the gap is not yet closed. Nevertheless, this text still contributes
to the future closure of that gap presenting the steps leading to the goal and
discussing the step which failed. This failed step is a New Conjecture awaiting
its solution.

In 2009 a new theory in the Complex analysis, unifying the old concept
of elementary functions with Ordinary Di¤erential Equations (ODEs), Auto-
matic Di¤erentiation (AD), and analytic continuation, was presented [1]. In it,
two competing de�nitions of the vector elementary vs. scalar (or stand-alone)
elementary functions were introduced, so that the question about their equiv-
alency immediately surfaced up, presenting a gap in the Unifying View. This
equivalency depended on the Conjecture, claiming that a system of m �rst-
order explicit polynomial ODEs may be converted into one n-order rational
ODE with a nonzero denominator at the given point.

Also earlier, in 2007 a similar question emerged in connection with a new
type of special points at which the function is holomorphic, but its scalar
elementariness is violated [2]. Such a function can satisfy no rational n-order
ODE with a nonzero denominator at this point.

Is a similar statement for such points true also for systems of rational
ODEs? This question depends on the same Conjecture posed in both papers
and remaining unsolved since 2008..

Here is an attempt to prove the Conjecture by its reformulation into terms
of algebra, and collaboration with algebraists George Bergman and Alexander
Givental, exemplifying a case of successful interdisciplinary cooperation.

Conventions

� All along this paper we deal with holomorphic functions and their deriv-
atives in the complex space. We use the acronyms ODEs for Ordinary
Di¤erential Equations, and IVP for Initial Value Problem.

� We are to deal with rational and polynomial systems of several �rst order
ODEs, and with stand alone n-order ODEs.

� We distinguish explicit ODEs such as
x(n) = F (t; x; :::; x(n�1)) or

y0 = G(t; x; y; z; :::)

from implicit ODEs

P (t; x; :::; x(n)) = 0
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� Speaking about explicit rational ODEs

x0 =
G(t; x; y; z; :::)

H(t; x; y; z; :::)
or

x(n) =
g(t; x; :::; x(n�1))

h(t; x; :::; x(n�1))

we understand that these rational ODEs are equivalent respectively to im-
plicit polynomial ODEs

x0H(t; x; y; z; :::)�G(t; x; y; z; :::) = 0 or

x(n)h(t; x; :::; x(n�1))� g(t; x; :::; x(n�1)) = 0

which, unlike the rational ones, are de�ned at all points of the phase space
(t; x; y; z; :::) 2 Cm+1 or (t; x; :::; x(n�1)) 2 Cn+1. At that, an im-
plicit polynomial ODE P (t; x; :::; x(n)) = 0 is called singular at a point

(t0; x0; x1; :::; xn) if
@P

@Xn

����
(t0; x0; x1;:::; xn)

= 0 ( Xi = x(i)).

� If the denominators H(t0; x0; y0; z0; :::) = 0 or h(t0; x0; :::; x(n�1)0 ) = 0 at
a certain point, the corresponding explicit rational ODEs are called singu-
lar at a the respective points, whose meaning requires a special de�nition
(below).

� When we say that a holomorphic at t0 solution x(t) satis�es a singular
at t0 rational ODEs, this means that x(t) satis�es the respective implicit
polynomial ODE.

The Conjecture

Consider a rational system

x0 =
g1(t; x; y; z; :::)

h1(t; x; y; z; :::)

y0 =
g2(t; x; y; z; :::)

h2(t; x; y; z; :::)
(1)

z0 =
g3(t; x; y; z; :::)

h3(t; x; y; z; :::)
: : : : : : : : :

and a polynomial system

x0 = p1(t; x; y; z; :::)

y0 = p2(t; x; y; z; :::)(2)

z0 = p3(t; x; y; z; :::)

: : : : : : : :

referred in the two equivalent forms of the Conjecture below.
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Conjecture 1. For any component, say x(t), of an explicit system in x(t); y(t); z(t); :::
of m 1st order...
... rational ODEs (1) regular at the
initial point (t0; a; b; c; :::), ie. all
the denominators hkjt=t0 6= 0 so
that the solution x(t) exists having all
the derivatives x(i)jt=t0 = ai; i =
0; 1; 2; :::,

... polynomial ODEs (2) regular at
all points (t0; a; b; c; :::) of its phase
space so that at any initial point
t0 the solution x(t) exists having all
the derivatives x(i)jt=t0 = ai; i =
0; 1; 2; :::,

there exists an explicit n-order rational ODE

(3) x(n) =
F (t; x; x0; :::; x(n�1))

G(t; x; x0; :::; x(n�1))

or an implicit polynomial ODE

(4) Q(t; x; x0; :::; x(n)) = 0

satis�ed by x(t); x(i)jt=t0 = ai; i = 0; 1; 2; :::, both (3) and (4) being regular at
the initial point (t0; a0; :::; an).

Vector vs. scalar elementariness

Here are the main de�nitions placed into Table 1 for a comparison.

Vector elementariness Scalar elementariness

De�nition 1. A function x(t) (as a
part of a vector (x; y; z; :::) ) is called
vector-elementary at and near a point
t = t0 if it satis�es a rational system
(1) regular at t = t0, or polynomial
system (2).

De�nition 2. A function x(t) is
called scalar-elementary at and near
a point t = t0, if it satis�es an ODE
(3) or (4) regular at t = t0.

De�nition 3. A holomorphic at t =
t0 vector-function (x; y; z; :::) is
called non-elementary, or violating,
or losing its vector elementariness at
t = t0 if in its neighborhood (ex-
cluding t = t0 itself) vector-function
(x; y; z; :::) can satisfy rational sys-
tem (1) only if (1) is singular at t = t0.
A vector-function which cannot sat-
isfy any rational system (1) at all is
called non-elementary everywhere.

A singular at t = t0 vector-function
(x; y; z; :::) is considered non-
elementary at t = t0.

De�nition 4. A holomorphic at
t = t0 function x(t) is called non-
elementary, or violating, or losing its
scalar elementariness at t = t0 if in
its neighborhood (excluding t = t0 it-
self) function x(t) can satisfy ratio-
nal ODE (3) only if (3) is singular
at t = t0. A function which can-
not satisfy any rational ODE (3) is
called non-elementary everywhere.

A singular at t = t0 function x(t) is
considered non-elementary at t = t0.

Table 1

Remark 1. Elementariness of a function x(t) at some point t0 does not mean
as though arbitrarily chosen system (1) satis�ed by x(t) is necessarily regular at
t0. Any ODE or their system may be intentionally made singular at any point [3].
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That is why an arbitrarily chosen ODEs satis�ed by x(t) may happen to be singular
despite elementariness of x(t) at the point. For example, elementary function x(t) =

tn at t = 0 satis�es both regular ODE x0 = ntn�1and singular ODE x0 =
nx

t
.

Remark 2. In order to establish elementariness (in either sense) of a function x(t)
at a point t0, it�s necessary to produce a system (1) satis�ed by x(t) and regular
at t0. From t0, by integrating the ODEs, a property of elementariness may be
analytically continued towards any point t where the denominators hk or G remain
nonzero. On the contrary...

Remark 3. In order to establish scalar non-elementariness of a function x(t) at
a point t0 it�s not enough to merely produce an ODE (1) satis�ed by x(t) and
singular at t0: the ODE with a singularity at t0 may happen to be replaceable with
a regular one. It�s a challenge to prove non-elementariness of a function. Besides
the Euler�s Gamma function (non-elementary in either sense at all points), among
other functions, so far, only scalar non-elementariness and only for a special kind
of functions [2] was proved .

Explicit polynomial systems (2) do not have singular points in their phase space
(though their solution vectors may have singularities). This fact has an interesting
implication.

Remark 4. The concept of elementariness (of any kind) of a function x(t) at a
point is based on regularity of ODEs at the respective point of their phase space.
That is why the fact of elementariness may be veri�ed either via rational (1) or
polynomial ODEs (2). However, the opposite concept of non-elementariness of a
function x(t) is based on singularity of ODEs at the respective point of their phase
space. Therefore non-elementariness may be expressed only via rational ODEs (1)
where the denominator disappears at some points of the phase space.

As any n-order ODE (3) is trivially transformable into a system of n 1st order
ODEs (1), the vector elementariness easily follows from the scalar one.
The vice versa statement, however, is more di¢ cult. Transformation of a system

(1) of ODEs into one ODE (3) (without the requirement of regularity of (3)) may
be achieved via a process of algebraic elimination using resultants (or combinato-
rially, Appendix in [3]). Both methods are practically di¢ cult. The real challenge,
however, was to meet the requirement of regularity of the target ODE (3) in the
Conjecture.
Now, as the Conjecture is proved, it establishes the equivalence of both de�nitions

of elementariness.

The proof of the Conjecture

The in�nite fundamental sequence of polynomial equations. Given an IVP
for a polynomial system

x0 = P1(t; x; y; z; :::); xjt=t0 = a
y0 = Q1(t; x; y; z; :::); yjt=t0 = b(5)

z0 = R1(t; x; y; z; :::); zjt=t0 = c
:::::::::::::;
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we say that an in�nite sequence of polynomial equations - the Fundamental Se-
quence

(6)

x0 = P1(t; x; y; z; :::) y0 = Q1(t; x; y; z; :::) z0 = ::: :::
:::
x(k) = Pk(t; x; y; z; :::)
x(k+1) = Pk+1(t; x; y; z; :::)
:::

obeying recursive relations

Pk+1(t; x; y; z; :::) =
@Pk
@t

+
@Pk
@x

x0 +
@Pk
@y

y0 +
@Pk
@z

z0 + :::(7)

=
@Pk
@t

+
@Pk
@x

P1 +
@Pk
@y

Q1 +
@Pk
@z

R1 + :::

corresponds to the ODEs (5) (and the similar in�nite sequences correspond also to
y(k); z(k); ::: if we needed them).

Remark 5. Though Pk+1 =
dPk
dt
, similar relations are not true for the partials:

@Pk+1
@u

6= d

dt

@Pk
@u

; u = t; x; y; :::; because for the operator
d

dt
=
@

@t
+ P1

@

@x
+

Q1
@

@y
+R1

@

@z
+ ::: ,

@

@u

d

dt
6= d

dt

@

@u
, u = t; x; y; :::

Remark 6. At an initial point t = t0, the IVP (5) generates also a sequence of
values x(k)jt=t0 = ak; k = 1; 2; :::. If only a �nite number of x(k)jt=t0 are nonzero,
then the solution x(t) is a polynomial, for which the Conjecture is obviously true.
Therefore, for further consideration, we assume that in�nitely many x(k)jt=t0 are
nonzero so that fPkg is an in�nite sequence of nonzero polynomials1.

View all the coe¢ cients at x0; y0; z0; ::: of (7) as a matrix in which we consider

in�nite columns





@Pk@y




 ; 



@Pk@z





 ; :::; k = 1; 2; :::
Remark 7. Further in this section, we will consider the right-hand sides Pk in the
fundamental sequence (6) as algebraic (rather than polynomial) functions holomor-
phic at the initial point - because in the process of elimination of undesired variables,
we will transform these initially polynomial right-hand sides into algebraic functions
regular at the initial point. In other words, we re-write the fundamental sequence
(6) in two columns

(8)

x0 = A1(t; x; y; z; :::) F1(x
0; t; x; y; z; :::) = 0

::: :::

x(k) = Ak(t; x; y; z; :::) Fk(x
(k); x0; :::; t; x; y; :::) = 0

x(k+1) = Ak+1(t; x; y; z; :::) Fk+1(x
(k+1); x0; :::; t; x; y; :::) = 0

::: :::

where in the process of elimination of y; z; ::: the former polynomials Pk in the �rst
column are transformed into algebraic functions Ak, whose algebraicity is veri�ed by

1Unless all the right hand sides in (5) are linear, the degrees of polynomials fPkg grow. In
particular, if polynomials in (5) are of degree 2, the degrees of fPkg grow by 1.
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the respective polynomials Fk in the second column regular at t = t0, i.e.
@Fk
@Xk

6= 0
at the initial point.

We will demonstrate existence of an implicit polynomial ODE F (x(n); t; x; :::; x(n�1)) =
0 satis�ed by x(t) and regular at t = t0 going through the following steps.

(1) Identifying the invertible equation for elimination of the current un-
desired variable, say z. Suppose this invertible equation in the sequence
(8) is x(i) = Ai(t; x; y; z; :::). The full algebraic function Ai may be
a multi-branch function, so that we must take care to choose the branch
which satis�es the initial values. After such an equation is identi�ed, the
variable z may be (formally) expressed as one of the branches of an alge-
braic function Z

(9) z = Z(t; x; y; x(i); x(j); :::)

holomorphic at t = t0. Here again, we must choose the branch satis�ed by
the given initial values.

(2) Ridding of all occurrences of the undesired variable z in the rest of
equations (8). Using the formal expression (9), replace z in all the equations
of the fundamental sequence (8)

x(k) = Ak(t; x; y; Z(:::x
(i); x(j); :::); :::) = Ak(t; x; y; x

(i); x(j); :::)

with understanding that for k = i the equation turns into an identity
x(i) = x(i). For every algebraic functions Ak there must exist a polynomial
Fk(Ak; T; X0; Y0; :::Xk�1) verifying that Ak is algebraic.

(3) If the algebraic functions Ak does not have points of branching
singularity, it is, therefore, rational and regular at the given point com-
pleting the process of elimination of z. Otherwise, the algebraic function
Ak has branches.

(4) Inspection of every algebraic function Ak whether its branches have
crossing at the initial point t = t0. If they do not, apply the Givental
theorem (in the Appendix) to the polynomial equation

(10) Fk(Ak; T; X0; Y0; :::Xk�1) = 0; Ak = x
(k); Xi = x

(i)

According to that Theorem, if there is no self crossing at t = t0, then
@Fk
@Ak

����
t=t0

6= 0 so that the polynomial (10) veri�es regularity of the algebraic

functions Ak for the current k. and we can go ahead to verify the regularity
for k + 1. Otherwise if the branches of this Ak cross each other at t = t0...

(5) Choose some subsequent equation in the sequence with number m > k for
which the branch Am does not self cross at t = t0 (we will see that it is
possible).

(6) Repeat the above process for elimination of y and other undesired variables.

Step 1 and what remains unknown in it. The goal of Step 1 is to eliminate a
current undesired variable, say z, from one of the equations (8) (whose right-hand
sides Ak are assumed to be algebraic functions regular at the initial point). In
order to do it, we want to identify at least one equation of the in�nite sequence

(8) for which
@Ak
@z

����
t=t0

6= 0 so that this equation be invertible in z. After
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that, we solve this equation in z formally obtaining an algebraic representation
z = Z(t; x; x0; y; :::) and substitute it into all the remaining equations (8) thus
ridding of z. This way we eliminate z from the in�nite system (8) diminishing the
number of the undesired variable in it.
If we succeed in identifying such an invertible equation for every undesired vari-

ables y; z; ::: in step 1, will ful�ll all the steps completing the proof.
What remains unknown in Step 1, however, is what to do in the exceptional case

when all

(11)
@Ak
@z

����
t=t0

= 0 ; k = 1; 2; :::

in the in�nite sequence (8) so that it is impossible to �nd in it even one equation
invertible in z. Such an exceptional situation does exist as we have found several
such examples, and extensively studied this situation in the report [5], �guring out
interesting properties of the solution of the source system (5) under such exceptional
conditions.
In the examples that we have found, it was possible to diminish the number of

the undesired variables - and therefore to ful�ll the goal the process of elimination
even in this exceptional case. However generally we do not know how to diminish
the number of the undesired variables in the situation of the "zero column" (11).
Consequently, the following proof presumes that the exceptional situation (11)

at step 1 does not happen leaving the Conjecture still open in the case of the "zero
column" (11).

Step 2. Now, having the algebraic function (9) holomorphic at t = t0 , we may
replace all occurrences of variable z in all equation of the fundamental sequence (6)

(12) x(k) = Ak(t; x; y; Z(:::x
(i); x(j); :::); :::) = Bk(t; x; y; x

(i); x(j); :::)

where every Bk is an algebraic function so that in�nite sequence of polynomial
equations (6) turns into a sequence of algebraic (rather than polynomial) equations

x(k) = Bk(t; x; y; x
(i); x(j):::)

being a superposition of algebraic functions.

Remark 8. After the substitution (12), all functions Ak in the sequence (8) ought
to be replaced with Bk. However, in order to not complicate the notation, we leave
in (8) notation Ak assuming that the substitution (12) was already made.

For each algebraic Ak there exists the polynomial

(13) Fk(Ak; T; X0; Y0; Xi; Xj :::)

verifying that Ak is algebraic. We are moving to the goal of assuring that

(14)
@Fk
@Ak

����
t=t0

6= 0:

Step 3. We must inspect all functions Ak; k = 1; 2; ::: If current Ak does not
have points of branching singularity, Ak therefore is rational and regular at the
given point. Otherwise the algebraic functions Ak have branching singularities.
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Step 4. Verify polynomials Fk in (13) at a small vicinity U of the initial point
(ak; t0; a0; y0; ai; aj) if they meet the terms of the Proposition proved by Givental
(in the Appendix 1) thus guarantying regularity (14). In order to meet those terms,
we must check if the solution Ak of the polynomial equation Fk = 0 (13) is unique
in a small vicinity U in the following sense.
Every algebraic function Ak (12) is viewed as a branch of the full algebraic func-

tion de�ned by the polynomial (13) so that it is the point (ak; t0; a0; y0; ai; aj)
which identi�es a particular branch (from many) which is the solution of the source
ODEs (5). Analytical continuation of the branch Ak may lead to other branches,
some of which (say ~Ak) may pass through the same initial point (ak; t0; a0; y0; ai; aj).
If this is the case, we have two (or more) branches crossing at the initial point. The
following example2 demonstrates this case.

Example 1. Consider one branch y+ = +x
p
x+ 1 at the origin (Fig 1). Its

only singularity is the branching point at the x = �1. The other branch is y� =
�x
p
x+ 1 and they both cross at the origin. The polynomial verifying that y+

and y� are branches of the full algebraic function is F = y2 � x2 � x3. At the
origin

@F

@y
= 0 (otherwise it would be violation of the theorem of uniqueness and

existence of the solution).

First, assume that Ak is the only branch in a small vicinity U of the initial point
(ak; t0; a0; y0; ai; aj). With such an assumption, we do meet the requirements
of the Proposition so that the polynomial equation Fk = 0 meets the requirement
of regularity (14). Otherwise...

Step 5. The algebraic branches cross each other at (ak; t0; a0; y0; ai; aj) so that
Akjt=t0 = ~Akjt=t0 . In the Example 1, the branches cross at nonzero angle so that
though y+(0) = y�(0), y0+(0) 6= y0�(0). If the Example 1 is modi�ed so that say

y+ = +x3
p
x+ 1, then y(k)+ (0) = y

(k)
� (0) for k = 0; 1; 2, but y(3)+ (0) 6= y

(3)
� (0) -

Fig 2.
In a general case, let�s consider x(k) = Ak vs. another branch ~x(k) = ~Ak.

Assume that x(k+n)jt=t0 = ~x(k+n)jt=t0 for n = 0; 1; ::: until in�nity. If it were so,
that would mean that both branches are identical: x(k) � ~x(k) contradicting that
they are di¤erent branches. Therefore, for certain n; x(k+n)jt=t0 6= ~x(k+n)jt=t0 .
With that in mind, the equations of (12) with numbers k; k + 1; :::; k + n � 1

replace with the identities, and consider the equation x(k+n) = Ak+n together with
its verifying polynomial Fk+n, which does meet the requirements of the Proposition
1 in the Appendix 1.
Move on inspecting Ak+n+1; Ak+n+2; until all of them are either regular at the

initial point, or replaced with identities.
Now the elimination of z is completed.

Step 6. Repeat the above elimination process of y and possibly other undesired
variables. When there remains no undesired variables in the fundamental sequence
(8), for any ODE x(k) = ::: which is not an identity, the implicit polynomial ODE
Fk = 0 will be the target n-order ODE claimed by the Conjecture and proving it
- though under the limitation that we do not deal with the exceptional case.�

2Courtesy of George Bergman
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The remaining part of this report was written when we believed as
though the Conjecture were proven "entirely". Hoping, that some
days it will happen, here are a few more facts and discussion outlining
the future state when the gap in the theory of elementary functions
is closed, and how the Unifying theory then will look like.

Remark 9. The method of this proof is of the "pure existence" type. However, it
shows that the process of obtaining the target ODE Q = 0 (4) generally depends
on the initial values (t0; x0; y0; z0; :::) of the source (2) or (1). The critical

factor
@Q(T; X0; :::; Xn)

@Xn
of the target (4), if expressed via (x; y; z; :::) using the

fundamental sequence (6), is

@Q(T; X0; :::; Xn)

@Xn
= q(t; x; y; z; :::):

Here q is a polynomial (rather than a constant). As such, it disappears on a non-
empty manifold q(t; x; y; z; :::) = 0: Therefore, when the target ODE (4) is
obtained for one point (t0; x0; y0; z0) at which q(t0; x0; y0; z0) 6= 0; at other
points (t; x; y; z; :::) it is possible that q(t; x; y; z; :::) = 0: Therefore, generally
the target n-order ODE cannot be one and the same for all points of the phase space
of the source system.

Corollary 1. Let t0 in a holomorphic function x(t) be an isolated point of violation
of elementariness meaning that x(t) can satisfy no regular rational system (1) or an
ODE (3) at t0. At a regular point t1 6= t0 however, (1) or (3) may be transformed
into a polynomial system (2) satis�ed by x(t): Then, at least one of the components
y; z; ::: of (2) must have a singularity at the point t0 so that t0 be unreachable
in a process of integration of the system (2) of ODEs from t1 to t0.

Proof. If we assume that the initial values x(t0) (with the corresponding initial
values y(t0); z(t0); :::) in the IVP for the poly system (2) produce the solution
x(t) while it is given that x(t) can satisfy no regular rational ODE (3) at t0, this
would contradicts the claim of the already proven Conjecture that, at any point
(t0; x0; y0; z0) of the phase space of (2) there exist a regular target ODE (3). �

Example 2. The solution of the rational ODE

x0 = x� x� 1
t

is x(t) =
et � 1
t

; x(0) = 1 losing elementariness at t = 0: This x(t) also satis�es

an IVP, say at t = 1; for the polynomial system,

x0 = x� xy + y; xjt=1 = e� 1
y0 = �y2; yjt=1 = 1

(here y =
1

t
). Indeed, the point t = 0 is unreachable in this system.

Discussion

Before the equivalence between the vector- and scalar elementariness was estab-
lished in this paper, the following comparison Table 2 had been compiled in [3] in
order to emphasize the di¤erent roles played by these de�nitions.
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Scalar elementariness... Vector elementariness...
Follows from the scalar elementari-
ness, but the vice versa statement is
not yet proved.

The proofs of the fundamental prop-
erties not known

The fundamental properties proved:
the closeness of the class of vector-
elementary functions in respect to the
superposition and the inverse vector-
functions, and the fundamental trans-
forms [1].

Not known if contains all Liouville el-
ementary functions

Contains the conventional Liouville
elementary functions

Is lost at isolated points in some func-

tions like
et � 1
t

or
sin t

t
at t = 0.

Not known if it is lost at these points

The � function and � integral are non-elementary at all points in any sense
thanks to the Hölder theorem.

Table 2.

As it shows, the properties which were proved for one type of elementariness,
were not proved for the other. Therefore, now all properties in both columns are
established and apply to the uni�ed elementariness.
In particular, the answer to the open question posed in [2] whether the function

x(t) =
et � 1
t

at t = 0 violates also the vector elementariness, is Yes. The same

applies to all functions violating scalar elementariness in the Table 1 in [2].

What about modi�cations of the Conjecture. We have already mentioned
earlier, that the Conjecture with some "minor" modi�cations remains true and
easily provable.
For example, if we drop the requirement that the denominator in the target ODE

(3) be nonzero, conversion of a polynomial system of ODEs into one n-order ODE
(3) is possible either by the method of algebraic elimination with the resultants [2],
or via combinatorial approach [3].
Or, if we drop the requirement that the target ODE (3) be rational allowing

its right-hand side to be some holomorphic function, conversion of a polynomial
system (or ODEs with holomorphic right-hand sides) into one n-order ODE with
a holomorphic right-hand side becomes a trivial tautological exercise with a �rst
order target ODE x0 = '1(t); where x = '(t) is the component of the solution of
the system and '1(t) = '

0(t), as noted in [2].
Here is, however, a modi�cation which would make the Conjecture false.

Remark 10. If the Conjecture claimed...

� that the target ODE (3), instead of being explicit rational, were explicit
polynomial (15); or...

� that the target ODE (4), instead of being implicit polynomial were explicit
polynomial (15)

(15) x(n) = Q(t; x; :::; x(n�1));
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so modi�ed Conjecture would be false. The counterexample is a function

having points of violation of elementariness (such as x(t) =
et � 1
t

at t = 0)

which cannot satisfy ODE (15) at either points of its phase space. Only
elementary functions not having points of violation of elementariness can
satisfy (15): for example x(t) = et.

In his paper [4] of 2022, also C. Kiselman considered some modi�cations of
the Conjecture and of de�nitions of elementariness, and he made a comprehensive
review of history and origin of the concept of elementary functions. However, he
quoted this original Conjecture inaccurately, believing as though the order n of the
target ODE were the the number m of ODEs in the system plus 1.

Regularization of an ODE. A function x(t) holomorphic at some point t0 may
satisfy many di¤erent ODEs: either regular or singular at this point.
Let a holomorphic function x(t) satisfy an implicit poly ODE

(16) P (t; x; x0; :::; x(m)) = 0

which happened to be singular at t0. Is it always possible to replace the ODE
P = 0 with another implicit poly ODE

Q(t; x; x0; :::; x(n)) = 0

regular at t0?
The answer depends not on that arbitrary ODE chosen to verify whether a

function x(t) is elementary at t0, but on the fact whether t0 is a point of violation
of elementariness of x(t). If t0 is not such a point, singular ODE (16) may be
replaced with an ODE regular at t0 (though we do not know how to �nd it).
If x(t) does not have points of lost elementariness at all, ODE P = 0 may be

replaced with an explicit poly ODE x(n) = p(t; x; x0; :::; x(n�1)):
Here are examples of seemingly quite similar ODEs.

Example 3. The (entire) function x(t) = tet satis�es the ODE

P = tx0 � tx� x = 0

singular at t = 0. However x(t) satis�es also the ODE

Q = x00 � 2x0 + x = 0

regular at t = 0. This function x(t) does not have points of violated elementariness.

Example 4. The (entire) function x(t) =
et � 1
t

; x(0) = 1; satis�es ODE

P = tx0 � tx+ x� 1 = 0

singular at t = 0. However, there can not exist a polynomial ODE satis�ed by this
function and regular at t = 0 - because this x(t) has a point of violated elementari-
ness at t = 0:
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Taylor evaluation at a point of lost elementariness. When a function x(t)
violates elementariness at a point t = t0 while being holomorphic at it, computation
of its derivatives x(k)jt=t0 by applying the formulas of the optimized Taylor method
(or AD) [1] are no more possible because of singularity of the respective ODEs.
However, these derivatives x(k)jt=t0 may still be evaluated in a special process

(outlined in [1]) for obtaining formal derivatives of ODE (16) P = 0 singular at
t = t0. Unlike such an evaluation in the case of regularity, the process of evaluation
of a singular ODE generally may evolve into a branching procedure delivering either
multiple formal Taylor expansions (convergent or not), or none of them.
However, in particular cases of functions x(t) holomorphic at the point yet violat-

ing elementariness at it, this process may generate recursive formulas for x(k)jt=t0
and the convergent Taylor expansions (as considered in [1]).

Example 5. At t = 0; for the function

x(t) =
et � 1
t

; x(0) = 1

satisfying the singular IVP

P = tx0 � tx+ x� 1 = 0
the process of formal di¤erentiation yields the true derivatives and the convergent
Taylor series:

dnP

dtn

����
t=0

=
h
tx(n+1) + nx(n) � tx(n) � nx(n�1) + x(n)

i
t=0

=

= (n+ 1)x(n) � nx(n�1) = 0;

x(n)
���
t=0

=
1

n+ 1

so that x(t) is the unique solution of this singular IVP, and a regular ODE at t = 0
is impossible for this x(t).

Example 6. The same is true for the IVP

P = tx00 � x = 0; x(0) = 0; x0(0) = 1;

dnP

dtn

����
t=0

=
h
tx(n+2) + nx(n+1) � x(n)

i
t=0

= Qn+1 =

= nx(n+1) � x(n) = 0;

x(n)
���
t=0

=
1

(n� 1)! ; n � 1;

These recursive formulas are special, di¤ering from the general formulas of the
optimized di¤erentiation applied to ODEs in the canonical format in [1].

Suggestions on the terminology. As the gap in the Unifying view [1] is closed
now so that we can deal with the uni�ed concept of elementary functions, it�s the
time to �x the terminology concerning elementary functions and the Taylor method
framed within the Unifying View, which uni�es...

� Elementary functions;
� ODEs as an instrument for evaluation of the derivatives of the solution;
� The class of elementary ODEs closed with regard to their solutions;
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� The transformations of all elementary ODEs into the special formats,mak-
ing possible...
�Optimized computation of n-order derivatives via the canonical sys-
tems, making possible...

� The optimized Taylor integration method as a tool of analytic
continuation, revealing. . .
� Special points unreachable via Taylor integration of ODEs,
i.e. the points where the solution is holomorphic, but loses
elementariness.

The seed of the theory discussed here originates in one chapter of the book by
Ramon Moore "Interval Analysis" (1966) where he linked the optimized n-order
di¤erentiation of general expressions with the elementary functions.
In terms of the Unifying view, the "Moore�s elementary functions" must be called

"vector elementary". Moore emphasized, that de�ned by him elementary functions
include all those conventional elementary functions called so by Liouville. There-
fore, Moore didn�t introduce a new term, believing that the same term "elementary
functions" must be used also to his generalization of this notion. Moore�s general-
ization merely added a fundamental property to the notion of elementary functions
which prior to him were merely a conventional list. I support the Moore�s approach.
My preferential list of the terms for the uni�ed concept of elementary functions is
the following.

(1) "Elementary functions" (no adjectives). When it is necessary to distinguish
those of Liouville, or to emphasize scalar- or vector-elementariness, it should
be said so.

(2) "Special elementary functions" for those of Liouville vs. "General elemen-
tary" for those in the Unifying view.

(3) "Elementary functions" (no adjectives) for those of Liouville. "General
elementary" for those in the Unifying view.

Similarly, Moore used the generic term "Taylor method" for the "Optimized
Taylor Method", which now is a part of the Unifying view too. I suggest using the
term "Optimized Taylor Method", or even dropping the word "Optimized".
Later, the practitioners attached to this method the name Automatic Di¤er-

entiation (AD) because AD relies on the formulas of the Optimized n-order dif-
ferentiation of expressions by Moore. However, the term AD in essence denotes
algorithms converting the code computing the functions into a code computing the
n-order derivatives of those functions. Therefore, the term AD must be reserved to
conversion of code rather than to the "Optimized Taylor Method".
I strongly suggest to stay with these two terms above avoiding alternatives like

"Power Series Method" or "Di¤erential Transform Method", or "Picard method".

Acknowledgement 1. This �nalization of the Unifying view was made possible
thanks to help of algebraists George Bergman and Alexander Givental3 in the follow-
ing way. In my search of possible equivalents of the Conjecture into the language of
pure algebra, �rst I came to the Proposition 1 (in Appendix 1) missing the condition
(2). When George Bergman brought Example 1 as a counterexample, I added that
lacking condition. Then George Bergman circulated the so corrected Proposition

3They both teach in the Berkeley university https://math.berkeley.edu/people/faculty

https://math.berkeley.edu/people/faculty
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among his circle of professionals, of whom Alexander Givental had found the proof
of it. I extend my cordial thanks to both.

Appendix 1: The crucial theorem by Alexander Givental4

The main obstacle in attempts of proving the Conjecture has been its claim of
regularity of the target polynomial ODE P (T; X0; :::; Xn) = 0, namely that

(17)
@P

@Xn

����
t=t0

6= 0:

It was necessary to �nd an instrument, which makes such a claim.
In the theory of implicit equations we have the opposite situation when the

regularity (17) is given, while existence and uniqueness of the solution follow from
it. Here, therefore, we needed a kind of a vice versa statement formulated in the
following Proposition.

Proposition 1. Let P (y; x) be an irreducible polynomial verifying that y(x) is
algebraic. As a full algebraic function, y(x) may have several branches, say one
of them being yi(x); passing through a point (y0; x0) whose small neighborhood is
denoted U . Then,

(1) if yi(x) is holomorphic, and
(2) yi(x) is a unique solution of P (y; x) = 0 in U ,

@P

@y

����
(y0; x0)

6= 0:

A proof of this proposition was provided by Alexander Givental as the following
Theorem.

Theorem 1. Let P be a nonzero irreducible polynomial in variables x1; :::; xn over
the complex numbers, having constant term 0, and A a holomorphic function in n�1
complex variables de�ned in some neighborhood U of the origin, such that for some
" > 0, the zero-set of P on U�fxnj jxnj < "g is the graph of xn = A(x1; :::; xn�1).
Then the coe¢ cient in P of the monomial xn is nonzero; i.e.

@P

@xn
is nonzero at

the origin.

Proof. We �rst observe that because P is irreducible, its gradient cannot be iden-

tically zero on its zero-set. Indeed, choose i such that
@P

@xi
is not identically zero

on complex n-space. If
@P

@xi
were identically zero on the zero-set of P , then by

the Hilbert Nullstellensatz, P would divide
�
@P

@xi

�m
for some m, hence since the

polynomial ring is a unique factorization domain and P is irreducible, P would

divide
@P

@xi
; which, looking at degrees in xi, is impossible.

Hence the subset of the zero-set of P on which the gradient of P is zero must be
a proper algebraic subset of that irreducible algebraic set, hence must have complex
dimension < n� 1.

4Alexander Givental provided the proof of this Theorem in private correspondence on December
8, 2022.
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Now let H denote the ring of holomorphic functions on U . Dividing P by xn�A
in H[xn], we get P = (xn�A)G+C, with C 2 H, G 2 H[xn]. Since P is identically
zero on the set de�ned by xn = A, we in fact have C = 0, so P = (xn � A)G. In
particular, the value of

@P

@xn
at the origin is the value of G at the origin, so it

su¢ ces the prove this nonzero. If G were zero at the origin, then since its zero-set
is contained in that of P , and must have complex dimension at least n � 1, and
P = (xn �A)G has zero gradient at all points of the zero-set of G, we would get a
contradiction to the preceding paragraph. �

The following is a discussion of a few consequences (not necessary for the proof
of the Conjecture.
Consider a version of Proposition 1 modi�ed into a polynomial ODE.

Remark 11. (The solution holomorphic and unique, yet the equation singular).
Let P (Xn; T; X0; :::; Xn�1) be an irreducible polynomial satis�ed by a point
(t0; a0; :::; an), and x(t); holomorphic at this point, is a unique solution of the
ODE P (x(n); t; x; :::; x(n�1)) = 0. Unlike in the Proposition 1, the regularity (17)
does not follow in this setting, as illustrated by the Examples 5, 6. A point t = 0
in those Examples is the point of violation of elementariness for both holomorphic
functions, meaning that they can satisfy no regular polynomial ODE at this point.
For ODEs, the regularity (17) does not follow from the fact that x(t) is holomorphic
and unique solution.

Now consider the Proposition 1 for a scalar x.

Corollary 2. (Ridding of self-crossing). If the condition (2) in Proposition 1 is
violated because other branches yi(x) do pass through the same point (y0; x0); there
exists such an integer k > 0, that y(k)(x) is however a unique holomorphic branch at
the small neighborhood U of the point (y0; x0): Then, if Q(Yk; x) is an irreducible
polynomial verifying that y(k) is algebraic so that Q(y(k); x) = 0, all the conditions
of the Proposition 1 are met for y(k) (rather than for y),

@Q

@Yk

����
(y0; x0)

6= 0;

and the ODE Q(y(k); x) = 0 veri�es that y(x); y0(x); y00(x); ::; y(k�1)(x) are
elementary at x0.

Remark 12. (Di¤erence between violation of elementariness and violation of the
uniqueness of an algebraic solution). If the regularity (17) is violated for an ODE
P (x(n); t; x; :::; x(n�1)) = 0 at a point t0, application of the di¤erentiating op-

erator
�
d

dt

�k
to this ODE will not make it regular for whichever k, because the

coe¢ cient at the leading derivative would remain the same expression (17). On
the contrary, if the regularity (17) is violated in the Proposition 1 because branches
yi(x) pass through the same point (y0; x0), di¤erentiation of y into y(k) does lead
to uniqueness of the branch passing through (y0; x0) and ful�llment of regularity
for the ODE Q(y(k); x) = 0:



16 ALEXANDER GOFEN

References

[1] Gofen, A., (2009), The ordinary di¤erential equations and automatic dif-
ferentiation uni�ed. Complex Variables and Elliptic Equations, Vol. 54, No. 9,
September, pp. 825-854. (Also here: http://TaylorCenter.org/Uni�edView.pdf).
[2] Gofen, A, (2008), Unremovable �Removable�Singularities, Complex Variables

and Elliptic Equations, Vol. 53, No. 7, p. 633-642. (Also here:
http://TaylorCenter.org/UnremovSingularity.pdf)
[3] Gofen, A, (2021), A report about the situation with the Conjecture.

http://taylorcenter.org/Gofen/Conjecture.pdf
[4] Kiselman, C. (2022), Generalized elementary functions. Complex Variables

and Elliptic Equations,
https://tandfonline.com/doi/full/10.1080/17476933.2022.2025785
[5] Gofen, A. A stumbling problem.
http://taylorcenter.org/Gofen/StumblingProblem.pdf
E-mail address : alex@taylorcenter.org
Current address : Retired
URL: http://TaylorCenter.org

http://TaylorCenter.org/UnifiedView.pdf
http://TaylorCenter.org/UnremovSingularity.pdf
http://taylorcenter.org/Gofen/Conjecture.pdf
https://tandfonline.com/doi/full/10.1080/17476933.2022.2025785
http://taylorcenter.org/Gofen/StumblingProblem.pdf


THE CONJECTURE PROVED 17

Figure 1. Graph of a full algebraic function y = �x
p
x+ 1 whose

branches cross at the origin. The graph was generated via Taylor
solver http://taylorcenter.org/Gofen/TaylorMethod.htm

http://taylorcenter.org/Gofen/TaylorMethod.htm
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Figure 2. Graph of a full algebraic function y = �x3
p
x+ 1

whose branches cross having tangency at the origin.
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