
A stumbling problem

Alexander Gofen (March, 2024)

This text explains what was an error and what turned into a stumbling prob-
lem in an attempt to resolve the Conjecture and close the gap in the unifying
view theory [1]. The manuscript submitted in January 2023 was declined with-
out reviewing and without indicating any errors, but later I �gured out on my
own an error in Lemma 1, which invalidated the entire proof of the Conjecture.
Nevertheless, the manuscript appeared as a preliminary draft (preprint) here
[1].
What happened to be a stumbling block is this special exceptional situation

formulated below.
Consider an IVP for a polynomial system

x0 = P1(t; x; y; z); xjt=t0 = a;
y0 = Q1(t; x; y; z); yjt=t0 = b; (1)

z0 = R1(t; x; y; z); zjt=t0 = c;

having indeed a holomorphic solution: in particular x(t) with all its derivatives
x(k) : x(k)jt=t0 = ak, k = 1; 2; ::: The original Conjecture was this.

Conjecture 1 There exists a rational ODE and the IVP for it

x(n+1) =
p(t; x; :::; x(n))

q(t; x; :::; x(n))
; x(k)jt=t0 = ak

with the denominator q(t; x; :::; x(n))jt=t0 6= 0 having the same solution x(t):

In the attempt of its proof, we consider an in�nite sequence of polynomial
equations - the Fundamental Sequence1 for x(t)

x0 = P1(t; x; y; z) y0 = Q1(t; x; y; z; :::) z0 = ::: :::
:::
x(k) = Pk(t; x; y; z)
x(k+1) = Pk+1(t; x; y; z)
:::

(2)

de�ned by the following recursion:

Pk+1(t; x; y; z; :::) =
@Pk
@t

+
@Pk
@x

x0 +
@Pk
@y

y0 +
@Pk
@z

z0 (3)

=
@Pk
@t

+
@Pk
@x

P1 +
@Pk
@y

Q1 +
@Pk
@z

R1:

1The di¤erence between the equation x(k) = Pk(t; x; y; z; :::) and the multi-variate formula
Faa-diBruno for x(k) is that the Faa-diBruno formula contains monomials over derivatives
(x(i))�(x(j))� :::(y(k)) :::(z(l))� ::: instead of monomials over x; y; z; :::. Indeed, the Faa-
diBruno formula by itself (without any ODEs (1)) cannot spell out x(k); y(i); z(j); ::: Here
too, we do not have the �nite formulas for polynomials Pk(x; y; z) : we have only recurrence
(3) for them.
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(The similar in�nite sequences may be written down also for y(k); z(k); ::: if we
needed them). The recursion also may be written as

Pk+1 =
d

dt
Pk; where

d

dt
=

@

@t
+ P1

@

@x
+Q1

@

@y
+R1

@

@z

so that the operator
�
d

dt

�k
would be a Faa di-Bruno-type cumbersome multi-

variate polynomial expression over P1; Q1; R1, their partial derivatives, and

over the operators
@�+�++�

@t�@x�@y@z�
- if we needed such explicit formula for�

d

dt

�k
.

We want to eliminate unnecessary variables y; z; ::: in the Fundamental
Sequence (2) from some of the equations which are invertible. In attempt to do
so, we stumble into the following question.

Consider for example variable z. We may presume that all
@Pk
@z

are non-

zero polynomials meaning that z does occur in every Pk. Of those non-zero

polynomials
@Pk
@z

some, however, may have a zero value at the given point so

that the respective k-equation (2) is not invertible in z at this point.
It can happen, however, that for some special initial point (t0; a; b; c) all

values
@Pk
@z

����
(t0; a; b; c)

= 0 so that the in�nite column

�
@Pk
@z

�
t=t0

; k = 1; 2; ::: (4)

is a zero column.
How to eliminate z in this case? This is the stumbling problem at the

moment.

Remark 1 "To eliminate z" means to �nd a smaller IVP

x0 = A1(t; x; y); xjt=t0 = a; (5)

y0 = B1(t; x; y); yjt=t0 = b

not containing z and having the same solution x(t), i.e. the same sequence of
derivatives x(k)jt=t0 . Here the functions A1 and B1 are algebraic regular at the
given point.

Remark 2 The sequence fPkg proper represents k-derivatives
�
d

dt

�k
of x(t)

- but we cannot say anything about the sequences
�
@Pk
@x

�
;

�
@Pk
@y

�
;

�
@Pk
@z

�
,

k = 1; 2; :::.
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Remark 3 The fact that all
@Pk
@z

����
t=t0

= 0 in (3) creates an illusion as though

the factor R1jt=t0 does not matter and may be arbitrarily changed in (1) not
a¤ecting the values of x(k)jt=t0 . However, any change in R1 or in the value
R1jt=t0 propagates into all polynomials Pk also (because of (3)) thus changing
the values x(k)jt=t0 .

Remark 4 While the original Conjecture is a statement of a general nature,
this stumbling problem is more narrow and more special. If an example dis-
proving the Conjecture exists, it must involve such a zero column (say for z)
preventing elimination of z (because in cases when no zero column exists for a
given system, the Conjecture is proven).

What is the special meaning of the zero column

Consider the general solution x(t; t0; a; b; c); y(t; t0; a; b; c); z(t; t0; a; b; c) of
the system (1) re-writing this system as

@x

@t
= P1(t; x; y; z); xjt=t0 = a; (6)

@y

@t
= Q1(t; x; y; z); yjt=t0 = b;

@z

@t
= R1(t; x; y; z); zjt=t0 = c

with understanding that

@x

@a

����
t=t0

= 1;
@x

@b

����
t=t0

= 0;
@x

@c

����
t=t0

= 0;

@y

@a

����
t=t0

= 0;
@y

@b

����
t=t0

= 1;
@y

@c

����
t=t0

= 0;

@z

@a

����
t=t0

= 0;
@z

@b

����
t=t0

= 0;
@z

@c

����
t=t0

= 1:

Since introduction of the Unifying View [2] it was specially emphasized, that
if x(t; a; b; c) is vector-elementary in t because the right-hand sides (6) are
rational or polynomial, this very x(t; a; b; c) is not necessarily elementary in

a; in b; or in c so that
@x(t; a; b; c)

@a
;
@x(t; a; b; c)

@b
; and

@x(t; a; b; c)

@c
may

not be necessarily expressible via a system of ODEs with rational right-hand
side R(t; x; y; z).
However, the following is true.

Theorem 1 If the component x(t; a; b; c) is elementary in t, its partial deriv-

atives
@x(t; a; b; c)

@a
;
@x(t; a; b; c)

@b
and

@x(t; a; b; c)

@c
(as functions of t)

are also elementary in t.
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Proof. Consider for example the function
@x(t; a; b; c)

@c
and obtain its deriv-

ative in t remembering that x; y; z (inside P1) are functions of t; a; b; c:

@

@t

@x

@c
=

@

@c

@x

@t
=
@

@c
P1(t; x; y; z)

=
@P1
@x

@x

@c
+
@P1
@y

@y

@c
+
@P1
@z

@z

@c
:

The right-hand side is a polynomial in t; x; y; z;
@x

@c
;
@y

@c
; and

@z

@c
. Similarly

@

@t

@y

@c
=

@

@c

@y

@t
=
@

@c
Q1(t; x; y; z)

=
@Q1
@x

@x

@c
+
@Q1
@y

@y

@c
+
@Q1
@z

@z

@c

and
@

@t

@z

@c
=

@

@c

@z

@t
=
@

@c
R1(t; x; y; z)

=
@R1
@x

@x

@c
+
@R1
@y

@y

@c
+
@R1
@z

@z

@c

Therefore, if we add three new unknown functions

u =
@x

@c
; v =

@y

@c
; w =

@z

@c

to the system (1), we obtain a closed polynomial system in 6 functions x; y; z; u; v; w

@x

@t
= P1(t; x; y; z)

@y

@t
= Q1(t; x; y; z)

@z

@t
= R1(t; x; y; z)

@u

@t
=
@P1
@x

u+
@P1
@y

v +
@P1
@z

w (7)

@v

@t
=
@Q1
@x

u+
@Q1
@y

v +
@Q1
@z

w

@w

@t
=
@R1
@x

u+
@R1
@y

v +
@R1
@z

w

demonstrating that u; v; and w are vector-elementary in t.

Remark 5 The Fundamental sequence written for u(k) =
@x(k)

@c
looks similar

to that for x:

:::

u(k) =
@

@c
Pk =

@Pk
@x

u+
@Pk
@y

v +
@Pk
@z

w (8)

:::
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Remark 6 If we integrate this expended system in x; y; z; u; v; w, then����@x(t)@c

���� ; ����@y(t)@c

���� ; and ����@z(t)@c

���� may be viewed as measures of dependency of the
solution on the initial value c, (or the measure of instability in c) varying with
t.

Theorem 2 If the in�nite column (4) is zero-column so that all

@Pk(t; x; y; z)

@z

����
(t0; a; b; c)

= 0; k = 1; 2; ::::;

then not only does
@x(t0; a; b; c)

@c
= 0 at t = t0 (as always), but

@x(t0; a; b; c)

@c
�

0 and
@x(k)(t; a; b; c)

@c
� 0; k = 0; 1; 2:::

for any t. The vice versa is also true.

Proof. Apply
@

@c
to any of the equations (2) remembering that x; y; z (inside

P1) are functions of t; a; b; c:

@

@c
x(k) =

@Pk
@x

@x

@c
+
@Pk
@y

@y

@c
+
@Pk
@z

@z

@c

and consider it at t = t0:�
@

@c
x(k)

�
t=t0

=

�
@Pk
@x

@x

@c
+
@Pk
@y

@y

@c
+
@Pk
@z

@z

@c

�
t=t0

: (9)

Here
@x

@c

����
t=t0

= 0,
@y

@c

����
t=t0

= 0, and
@z

@c

����
t=t0

= 1 6= 0: Even though @z
@c

����
t=t0

6=

0, the factor
@Pk
@z

is a zero column by the condition of the Theorem. Therefore

for all k
@x(k)

@c

����
t=t0

= u(k)
���
t=t0

= 0; k = 1; 2; :::: (10)

meaning that
@x(t; a; b; c)

@c
� 0 for all t at the �xed given values a; b; c for

which the zero column takes place.

The vice versa. Let
@x(t; a; b; c)

@c
� 0 for all t at the point (t; a; b; c).

Then also �
@

@t

�k
@x

@c
=
@x(k)

@c
= 0; k = 0; 1; 2; ::::

for all t at the point (t; a; b; c), including at t = t0 so that (10) holds. Now

reconsider the formula (9). In it
@x

@c

����
t=t0

=
@y

@c

����
t=t0

= 0; while
@z

@c

����
t=t0

= 1 so
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that it must be that all
@Pk
@z

����
t=t0

= 0; k = 1; 2; ::: meaning that the z-column

is a zero column.

Corollary 3 In the case of a zero column, the expanded system (7) has alge-
braic integrals.

Proof. First, it is u(t) � 0. Then, also u(k) � 0. Then, considering (8)

@Pk(t; x; y; z)

@y
v +

@Pk(t; x; y; z)

@z
w � 0 (11)

are algebraic integrals of the expanded system (7). A t = t0 where v(t0) = 0
and w(t0) = 1, we have what we already know: the zero column in z.

Remark 7 Beside the fact that
@x(t; a0; b0; c0)

@c
� 0; we do not know any-

thing about
@2x(t; a0; b0; c0)

@c2
or higher derivatives in c. If we write down a

multivariate Taylor expansion at a point (t; a0; b0; c0); t 6= t0; a coe¢ cient
at the linear term (c� c0) is zero. In terms of " and � this means that for any
t1 6= t0 there exists small " and � such that if jc � c0j < �; for the respective
solution x(t; a0; b0; c)

jx(t1; a0; b0; c)� x(t1; a0; b0; c0)j < ":

This motivates the following De�nition.

De�nition 4 The solution corresponding to an initial point (t0; a0; b0; c0)
which makes a zero column in the Fundamental sequence (2) is called an excep-
tional solution.

Example 1

x0 = x+ (x� y)z; x(0) = a

y0 = y + (x� y)z y(0) = a

z0 = R1(t; x; y; z) whatever expression.

Variable z is present in the right-hand sides. However, for these special initial
values the solution of this system x = y = aet is exceptional. Here is why.

x(k+1) = Pk+1 = Pk +
X

Cik(x� y)(i)z(k�i)

and
@Pk
@z

����
t=0

= 0 for all k because x � y is an integral of this IVP. Moreover,

not only does the solution x(t) not depend on the value zjt=0, but even the right-
hand side of the equation for z0 has no e¤ect on the x(t) for these special initial

6



values. Therefore, in this Example, in order to get rid of z obtaining a reduced
system (5) it�s enough to remove the zero polynomial (in z), namely (x � y)z
in both ODEs. However, in a general case of a zero column and the exceptional
solution, we have no knowledge what to do in order to obtain the reduced system
(5).

________________________________________________________________________________________
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The special meaning of linearly dependent columns

In the previous section we considered the solution of the system as a general
solution each component of which depended on t and the set of the initial
values considered as parameters. That was a particular case of dependency of
the solution - dependency on the special type of parameters (the initial values).
Now consider a solution-vector (x(t; p); y(t; p); z(t; p)) depending on

a parameter p. As a function of two independent variables t and p, such a
vector generally may satisfy quite di¤erent systems of ODEs: one in independent
variables t; the other in p. We do not know what is that system of ODEs in p.
We postulate that this solution-vector satis�es the earlier considered system (6)
in t:

@x

@t
= P1(t; x; y; z); xjt=t0 = a;

@y

@t
= Q1(t; x; y; z); yjt=t0 = b; (12)

@z

@t
= R1(t; x; y; z); zjt=t0 = c

which hides the parameter p (i.e. it does not appear in the right-hand sides).
We realize that while (x(t; p); y(t; p); z(t; p)) is elementary in t due to (12),
we do not know any rational system of ODEs demonstrating elementariness of
x(t; p) in p, i.e. we do not know any rational system

@x

@p
= r(p; x; y; :::)

: : :

satis�ed by x(t; p).

Denote
@x

@p
= u(t; p);

@y

@p
= v(t; p);

@z

@p
= w(t; p). We are to show, that

these u; v; and w are elementary in t.

Theorem 5 If the component x(t; p) is elementary in t, its partial derivative

u(t; p) =
@x

@p
is also elementary in t.

Proof. Applying
@

@p
to the system (12) we get

@u

@t
=

@2x

@t@p
=
@

@p
P1(t; x; y; z)

=
@P1
@x

u+
@P1
@y

v +
@P1
@z

w:

Similarly

@v

@t
=

@Q1
@x

u+
@Q1
@y

v +
@Q1
@z

w

@w

@t
=

@R1
@x

u+
@R1
@y

v +
@R1
@z

w
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Here is a polynomial system of ODEs for
@u

@t
;
@v

@t
;
@w

@t
- an extension of (12)

@x

@t
= P1(t; x; y; z)

@y

@t
= Q1(t; x; y; z)

@z

@t
= R1(t; x; y; z)

@u

@t
=
@P1
@x

u+
@P1
@y

v +
@P1
@z

w

@v

@t
=
@Q1
@x

u+
@Q1
@y

v +
@Q1
@z

w

@w

@t
=
@R1
@x

u+
@R1
@y

v +
@R1
@z

w

demonstrating elementariness in t of
@x

@p
= u;

@y

@p
= v;

@z

@p
= w.

Let�s assume that the in�nite (numeric) columns
�
@Pk
@x

;
@Pk
@y

;
@Pk
@z

�
t=t0

,

k = 1; 2; ::: are linearly dependent with respective coe¢ cients �; �;  not all
zeros so that �

�
@Pk
@x

+ �
@Pk
@y

+ 
@Pk
@z

�
t=t0

= 0; k = 1; 2; :::

Set the initial values ujt=t0 = �; vjt=t0 = �; wjt=t0 =  so that
@u

@t

����
t=t0; a; b; c

=

�
@P1
@x

u+
@P1
@y

v +
@P1
@z

w

�
t=t0; a; b; c

= 0:

Theorem 6 If the in�nite numeric columns
�
@Pk
@x

;
@Pk
@y

;
@Pk
@z

�
t=t0; a; b; c

are

linearly dependant at the initial point t = t0; then not only does
@u

@t

����
t=t0; a; b; c

= 0, but
@u

@t

����
a; b; c

� 0 for any t at the same initial point

(a; b; c).

Proof. Just as before, apply
@

@p
to the equations of the fundamental sequence

(2)
@

@p

�
@x

@t

�k
=
@x(k)

@p
=
@Pk
@x

@x

@p
+
@Pk
@y

@y

@p
+
@Pk
@z

@z

@p

so that

@x(k)

@p

����
t=t0

=

�
@Pk
@x

@x

@p
+
@Pk
@y

@y

@p
+
@Pk
@z

@z

@p

�
t=t0

=

�
@Pk
@x

�+
@Pk
@y

� +
@Pk
@z



�
t=t0

= 0; k = 1; 2; :::
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As
�
@

@t

�k
@x

@p

�����
t=t0

=

�
@u

@t

�k
t=t0

= 0 for all k = 1; 2; :::, therefore u � � also

for any t at the same initial point (a; b; c).

Remark 8 Though u � � and

@u

@t
=
@P1
@x

u+
@P1
@y

v +
@P1
@z

w � 0;

the linear combination

�
@Pk
@x

+ �
@Pk
@y

+ 
@Pk
@z

is zero only at t = t0 because only at this point ujt=t0 = �; vjt=t0 = �; wjt=t0 =
 as they were set.

We see that the fact of a zero column at a point and the fact of linearly
dependent columns at the point leads to the similar identities for the parametric

derivative
@x

@p
. "So what?!" - a question arises. How does it help to eliminate

z?
In the Examples below demonstrating linear dependency of the columns at

a point or the zero column, elimination of z happens to be possible, however I
do not know how to prove it (if this hypothesis is true).

Examples

Example 2 Linearly dependent columns (zero Jacobian). Consider the IVP

x0 = y + z; x(0) = a

y0 = y2; y(0) = b

z0 = 2z2; z(0) = c

whose solution is

x = � ln(1� tb)� 1
2
ln(1� 2ct) + a

y =
b

1� bt ;

z =
c

1� 2ct :

The second and third ODEs are actually stand alone ODEs. We can write down
their n-derivatives of the solutions

y(n) = n!yn+1

z(n) = 2nn!zn+1
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and therefore we have expressions for Pn

x(n) = Pn(x; y; z) = n!y
n+1 + 2nn!zn+1

and
@Pn
@y

= (n+ 1)!yn;
@Pn
@z

= 2n(n+ 1)!zn:

The Jacobian Jmn of lines m and n; n > m is

Jmn =

�
(n+ 1)!yn 2n(n+ 1)!zn

(m+ 1)!ym 2m(m+ 1)!zm

�
= 2m(m+ 1)!zm(n+ 1)!yn � 2n(n+ 1)!zn(m+ 1)!ym

= 2m(m+ 1)!(n+ 1)ymzm(yn�m � (2z)n�m):

If the initial values are such that b = 2c; all Jmnjt=0 = 0 meaning that columns
@Pn
@y

����
t=0

and
@Pn
@z

����
t=0

are linearly dependent when yjt=0 = b = 2c, zjt=0 = c;

namely

@Pn
@z

����
t=0

= 2n(n+ 1)!cn;
@Pn
@y

����
t=0

= (n+ 1)!(2c)n = 2n(n+ 1)!cn

@Pn
@z

����
t=0

=
@Pn
@y

����
t=0

so that � = 0; � = 1;  = �1 in terms of Theorem 6. Now observe, that with
such special initial values b = 2c we can see that y and z are related:

y =
b

1� bt =
2c

1� 2ct
z =

c

1� 2ct
i.e. y � 2z, being an integral of this IVP for these special initial values so that
z can be eliminated.

Example 3 A zero column for particular initial values with nonzero polynomi-

als. Consider the same IVP when b = 0; c 6= 0: Now we see that @Pn
@y

����
t=0

= 0

for all n. Observe again, that with these special initial values, the solution com-

ponent y = const = 0; though
@Pn
@y

is not a zero polynomial.

Example 4 All
@Pn
@z

are zero polynomials. That is the case if P1 and Q1 in

(1) do not contain z so that the subsystem in x; y is self-contained.

Example 5 The nonzero column for any initial values. Consider an IVP

x0 = x+ y � xy; x(1) = e� 1
y0 = �y2; y(1) = 1
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whose solution2 is an entire function x =
et � 1
t

; x(0) = 1; (with y =
1

t
having a singularity at t = 0). Then:

P1 = x+ y � xy;
@P1
@y

= 1� x

Observe that
@P1
@y

����
t=1

= 2� e 6= 0 so that at t = 1 the column @Pk
@y

����
t=1

cannot

be zero column. For other values of t,
@P1
@y

may be zero only if x = 1 (with

any y). However, the function x(t) is such that x = 1 only at t = 0 which is

inaccessible in this system. Therefore, the column
@Pk
@y

cannot be zero column

with any t for this system.

1. The Gap in the Unifying View Closed. (Actually, not yet).
https://academia.edu/98194003/The Gap in the Unifying View Closed
https://researchsquare.com/article/rs-2494232/v1

2. The Unifying view on ODEs and AD.

2This function x(t) was proven to have violation of the scalar elementariness at t = 0.
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