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Abstract A very few three-dimensional (8D) periodic orbits of general three-body problem (with three finite masses)
have been discovered since Newton mentioned it in 1680s. Using a high-accuracy numerical strategy we discovered 10,059
three-dimensional periodic orbits of the three-body problem in the cases of m; = mgo =1 and ms = 0.1n where 1 < n < 20
is an integer, among which 1,996 (about 20%) are linearly stable. Note that our approach is valid for arbitrary mass ms
so that in theory we can gain an arbitrarily large amount of 3D periodic orbits of the three-body problem. In the case of
three equal masses, we discovered twenty-one 3D “choerographical” periodic orbits whose three bodies move periodically
in a single closed orbit. It is very interesting that, in the case of two equal masses, we discovered 2783 three-dimensional
periodic orbits with the two bodies (m1 = mo = 1) moving along a single closed orbit and the third (ms # 1) along a
different one: we name them “piano-trio” orbits, like a trio for two violins and one piano. To the best of our knowledge,
all of these 3D periodic orbits have never been reported, indicating the novelty of this work. The large amount of these
new 3D periodic orbits are helpful for us to have better understandings about chaotic properties of the famous three-body
problem, which “are, so to say, the only opening through which we can try to penetrate in a place which, up to now, was
supposed to be inaccessible”, as pointed out by Poincaré, the founder of chaos theory.
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1. INTRODUCTION

The famous three-body problem can be traced back to Newton [1] in 1680s, which focuses on the motion of three
bodies with finite masses that attract to each other by gravitational force under Newton’s second law. It attracted many
famous mathematicians and physicists such as Euler [2] and Lagrange [3] who found a very few of the earliest planar
periodic orbits of the three-body problem. The three-body problem is three-dimensional (3D) in essence, but in the three
hundred years after Newton mentioned it, a very few periodic orbits of the general three-body problem were found almost
in the two-dimensional (2D) case that is certainly much simpler than the three-dimensional one. It was Poincaré [4] who
revealed its mathematical complexity and difficulty in 1890: the first integrals for the motion of the three-body system
do not exist so that its closed-form solution is impossible in general, and besides its trajectories have the sensitivity
dependence on initial conditions that laid the foundation of modern chaos theory. This well explains why in the 300
years only three families of planar periodic orbits of three-body system were found by Euler [2] in 1767 and Lagrange [3]
in 1772, until 1970s when the Broucke-Hadjidemetriou-Henon family of planar periodic orbits [5—7] were discovered by
means of computer. In 1993 the so-called Figure-8 planar periodic orbit was numerically discovered by Moore [8] and
subsequently rediscovered and rigorously proven by Chenciner and Montgomery [9], which is called “choreographic”
orbit: the three bodies move periodically in a single closed orbit. In 2013, Suvakov and Dmitraginovi¢ [10] made
a breakthrough to numerically discover 13 new distinct planar periodic orbits by means of modern computer using
Eulerian collinear initial configuration that has since been widely adopted to search for planar periodic orbits [11-14].

Why is it so difficult to find periodic orbits of three-body system even in 2013 when there exist supercomputers with
very high performance? It was Lorenz [15] who revealed the reason in 2006: despite the sensitivity dependence on initial
condition [4], a chaotic system has also the sensitivity dependence on numerical algorithm so that chaotic trajectory
is quickly polluted by numerical noise. Thus, since three-body problem is essentially chaotic according to Poincaré [4],
its trajectory should be sensitive to numerical noises that are unavoidable for traditional numerical algorithms such
as Runge-Kutta’s method (in double precision) that is widely used to gain trajectories of three-body system. In 2009
Liao [16] proposed the so-called “clean numerical method” (CNS) [17-21] whose numerical noises can be reduced to
such a low level that accurate/convergent chaotic trajectories can be gained in a finite but long enough time interval
t € [0,T.], where the so-called “predictable critical time” T, is determined by the level of background numerical noise.
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Figure 1: The initial configuration of the 3D three-body system. The initial positions of the three bodies are located
at 11 = (—1,0,0), 7o = (1,0,0) and r1 = (0,0, 2p) with the corresponding initial velocities v1 = (vg,vy,v;), V2 =
(g, vy, —v;) and vy = (—2vy/ms, —2v,/ms,0).

We emphasize here that accurate chaotic trajectory is very important for three-body problem, since it is the key reason
why the number of discovered new families of planar periodic orbits of general three-body problem increases to several
orders of magnitude: in 2017 Li and Liao [22] discovered more than 600 new families of planar periodic orbits of three-
body problem with three equal masses by means of computer using a numerical strategy based on CNS, then in 2018 Li,
Jing and Liao [23] further discovered 1,223 new families of planar periodic orbits of three-body problem with two equal
masses in a similar way, in 2021 Li et al. [24] successfully obtained 135,445 new planar periodic orbits (including 13,315
stable ones) with arbitrarily unequal masses, and in 2022 Liao et al. [25] proposed an effective roadmap to numerically
gain planar periodic orbits of three-body systems with arbitrary masses by means of CNS and machine learning. In 2024
Hristov et al. [26] found 24,582 equal-mass periodic orbits of free-fall three-body problem by means of high-accuracy
algorithm. Finally, there are no any obstacles for us to gain masses of new planar periodic orbits of three-body system
with arbitrary masses by means of high-accuracy numerical algorithms such as CNS.

However, compared to the planar periodic orbits mentioned above, the three-dimensional (3D) periodic orbits of
three-body problem are far limited. Two types of periodic orbits were mainly studied. The first is the spatial isosceles
three-body problem, in which two bodies have equal masses and the third body oscillates along a straight line, while the
three bodies always form an isosceles triangle. In the so-called restricted three-body problem that contains one massless
body, this configuration is known as the Sitnikov problem [27], where two massive bodies move along an elliptical orbit
in a plane, and the massless body oscillates in a straight line perpendicular to the plane. This class of 3D periodic
orbits has been extended to the general three-body problem, where all three bodies have finite masses [28-30]. The
second types were gained using the continuation methods to generate 3D periodic orbits from periodic orbits of restricted
three-body problem [31,32]. It is a great pity that a very few 3D periodic orbits of general three-body problem have
been found, to the best of our knowledge. Thus, it has great scientific meanings to discover a masses of 3D periodic
orbits of general three-body problem with finite masses.

2. INITIAL CONFIGURATION AND NUMERICAL STRATEGY

The motions of the general three-body system (with finite masses) are governed by the dimensionless equations
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where ¢t denotes the time, r; and m; are the position vector and mass of the i-th body, respectively. Let X(t) =
(r1(t), r2(t), r3(t), 71 (t), 72(t), 73(¢)) denote the state space of the three-body system at the time ¢, where 7;(t) represents
the velocity of the i-th body. To evaluate the proximity of the system to its initial state X (0), we define the so-called
“return proximity function”

(2) o(t) = |X(t)—X(0)l.
A periodic orbit is determined by §(7') = 0, where T is its period.
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Figure 2: 3D periodic orbits of general three-body problem: (a) O2(1.2), (b) Og(0.6), (c) O3(1.0), (d) O4(1.0), (e)
06(1.0), (f) Og(1.2). Blue: Body-1; Red: Body-2; Green: Body-3. Filled circle: initial positions of the three bodies.

As shown in Fig. 1, we use an initial configuration for the 3D three-body system in this paper. The initial positions
of the three bodies are located at 71 = (—1,0,0), 7o = (1,0,0) and 73 = (0,0, 2¢), the initial velocities of Body-1
and Body-2 are v1 = (g, vy, v.) and vo = (v, vy, —v;), respectively, where zg, vz, vy, v, are unknown. For the sake of
simplicity, let us consider the case of zero momentum, i.e. mjv; + movs + mgvs = 0, which gives the initial velocity
vy = (—(m1 + ma)vy/mg, —(my1 + ma)vy/ms,0) of Body-3. Note that in the above-mentioned configuration the initial
condition of the 3D three-body system is determined by the four unknown variables v, vy, v, and zp.

Our numerical strategy is briefly described as follows. First of all, we use the grid search method to search for
possible candidates of 3D periodic orbits of the three-body system in the case of v, = 0 within 29 € (0, 1], v, € (0,1] and
vy € (0,1]: 1000 isometric points are used in each dimension, i.e. for a chosen mj totally 1000 x 1000 x 1000 = 10° cases
are considered as initial condition to integrate the governing equations (1) using the DOP853 solver [33]. One among
these initial conditions is regarded as a candidate of 3D periodic orbit if its corresponding return proximity function (2)
is less than 10~! under a value of period T". Secondly, the values of (2o, vy, vy, v;) and T of each candidate are constantly
modified/corrected by means of the numerical approach (similar to [23]) based on the Newton-Raphson method [34]
and Clean Numerical Simulation (CNS) [16-21] : a 3D periodic orbit is discovered when the return proximity function
§(T) defined by (2) is less than 10710, The linear stability of periodic orbits is evaluated by Floquet theory [35]. To
compute the monodromy matrix, we integrate the variational equations along periodic orbit [36]. When all eigenvalues
of the monodromy matrix lie on the unit circle, the periodic orbit is linearly stable.

3. D1sCOVERY OF 10,059 THREE-DIMENSIONAL PERIODIC ORBITS

Note that ms is a variable although m; = mqy = 1 is fixed. Without loss of generality, we consider the case ms = 0.1n
where 1 < n < 20 is an integer, respectively, thus totally 2 x 10'° cases are done for the the grid search method. Using
a national supercomputer, we discovered 10,059 three-dimensional periodic orbits of the general three-body system. It
is found that 1,996 among them are linearly stable, approximately 20% of the total. Their initial condition, period T'
and stability are given on the website https://github.com/sjtu-liao/three-body. These 3D periodic orbits are named
O,,(m3), where n corresponds to the n-th orbit when ordered by its value of period T (from small to large) for a fixed
mass mgz (when m; = mg = 1). For example, O;(1) denotes the discovered 3D periodic orbit with the shortest period T
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Figure 3: 3D choreographic periodic orbits of three-body problem in case of m; = ma = mg = 1: (a) Og2(1.0), (b)
064(1.0), (c) O231(1.0), (d) Os524(1.0). Three bodies move along a single closed orbit (blue). Filled circles: the initial
positions of the three bodies. Blue: Body-1; Red: Body-2; Green: Body-3.

when m3 = 1. Some 3D periodic orbits are shown in Fig. 2 and their corresponding initial conditions (29, vg, vy, v;) and
periods T are given in Table S1 in Supplementary Information. To the best of our knowledge, all of these 3D periodic
orbits have never been reported and thus are novel. It should be emphasized that we can choose an arbitrary value
of mg, such as ms = 0.615 or m3 = 0.872, to obtain 3D periodic orbits in the similarly way. So, in theory, we can
gain an arbitrarily large amount of 3D periodic orbits of three-body system using the same initial configuration as that
mentioned in this paper.

In the case of three equal masses, i.e. m; = mo = m3 = 1, we discover 1,504 three-dimensional periodic orbits.
Among them, there are 21 “choreographic” orbits, say, the three bodies move periodically in a single closed orbit. Their
initial conditions, periods and stability are given in Table S2 in Supplementary Information. Different from the famous
planar choreographic orbit Figure-8 [8,9], these twenty-one choreographic orbits are three-dimensional, as shown in
Fig. 3. To the best of our knowledge, such kind of 3D choreographic periodic orbits of the general three-body system
have never been reported.

Besides, it is very interesting that, when m; = ms = 1 and m3 # 1, we found 273 three-dimensional periodic
orbits in the 19 cases of mg = 0.1n (1 < n < 20 but n # 10 is an integer), where the two bodies with equal mass
(m1 = mz = 1) move along a single closed orbit but the third (ms # 1) moves along a different closed orbit. We name
them “piano-trio orbit”, like a trio for two violins and one piano. Their initial conditions, periods and stability are
given on the website https://github.com/sjtu-liao/three-body. Four orbits of them are as shown in Fig. 4, where Body-1
(m; = 1) and Body-2 (mg = 1) follow a single closed orbit (in red) but Body-3 (mg # 1) traces a distinct path (in
green), and their initial conditions, periods and stability are given in Table S3 in Supplementary Information. To the
best of our knowledge, such kind of 3D periodic orbits of general three-body system have never been reported.

4. CONCLUDING REMARKS AND DISCUSSION

In this paper, by means of a numerical strategy based on the grid search method, Newton-Raphson method [34]
and clean numerical method (CNS) [16-21], we successfully discovered 10,059 three-dimensional periodic orbits of the
three-body problem in the cases of m; = mg = 1 and mz = 0.1n (1 < n < 20), among which 1,996 (about 20%) are
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Figure 4: 3D “piano-trio orbits” of three-body problem with two bodies (m; = ms = 1) moving along a single closed
orbit (red) but the third (mg # 1) along a distinct orbit (green): (a) Og(0.6), (b) O26(1.1), (¢) O45(0.5), (d) O267(0.9).
Filled circles: the initial positions of the three bodies. Blue: Body-1 (m; = 1) ; Red: Body-2 (mg = 1) ; Green: Body-3
(ms # 1)).

linearly stable. It should be emphasized that our numerical approach is valid for arbitrary mass ms (such as ms = 0.615
or ms = 0.872) so that in theory we can gain an arbitrarily large amount of 3D periodic orbits of the three-body
problem in a similar way (we will do it and update the dataset on the website https://github.com/sjtu-liao/three-body).
Certainly, these 3D periodic orbits should be helpful for us to have better understandings about the chaotic properties
of the famous three-body problems, since they “are, so to say, the only opening through which we can try to penetrate
in a place which, up to now, was supposed to be inaccessible”, as pointed out by Poincaré, the founder of chaos theory.

It should be emphasized that, in the case of three equal masses (m; = mg = mg = 1), we discovered twenty-one
3D “choerographical” periodic orbits whose three bodies move periodically in a single closed orbit. To the best of our
knowledge, these 3D “choerographical” periodic orbits have never been reported, which reveals its general existence for
three-body problem and indicates the novelty of this work. Besides, in the case of two equal masses (m; = ms = 1 and
ms # 1), we discovered 273 three-dimensional periodic orbits with two bodies (m; = mg = 1) moving along a single
closed orbit and the third mgz # 1 along a different one: we name them “piano-trio” orbits, like a trio for two violins
and one piano. To the best of our knowledge, these “piano-trio” orbits have never been reported, indicating the novelty
of this work.

As illustrated by Liao et al. [25], one can gain arbitrarily accurate planar periodic orbit of three-body problem by
means of CNS. Similarly, each of our discovered 10,059 three-dimensional periodic orbits reported in this paper could
be in an arbitrary accuracy. For example, the high accuracy (in 70 significant digits) initial condition and the period
T of the linearly stable periodic orbit O3(1.0) are listed in Table S4 in Supplementary Information. In physics, the
minimum spatial distance is a Planck length [, = 1.616252 x 1073% meter and the maximum distance is the diameter of
the observable universe (as the characteristic length) d, ~ 9.3 x 101° light year ~ 8.4 x 102 meter, so that the minimum
dimensionless spatial length that has physical meaning is [,,/d,, ~ 1.9 x 107%2. Note that our 3D periodic orbit O3(1.0)
listed in Table S4 in Supplementary Information is accurate in the 70 significant digits, which thus can be regarded,
from the physical viewpoint, as accurate as a closed-form solution.



Many further investigations should be done in future. It is true that in this paper we only consider the case with
two equal masses m; = my = 1. However, using the known 3D periodic orbits obtained in this paper as a starting
point, it is straightforward to gain new 3D periodic orbits of general three-body problem with three unequal masses by
means of the continuation method [24]. Note that, for planar periodic orbits of three-body problem, their topological
identification can be classified by braid groups [8] or shape-space sphere [10,37]. However, for a 3D periodic orbit of
general three-body problem, it is an open question how to identify its topological classification [8].
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Supplementary Information

Table S1: The initial conditions, the periods T and the stability of some 3D periodic orbits in the case of the initial
position 71 = (—1,0,0), 72 = (1,0,0) and r3 = (0,0, 2p) with the initial velocities v1 = (vg, vy, V), V2 = (Vg, vy, —V>)
and vs = (—2v,/ms, —2v,/ms,0). Stability of periodic orbit: S (linearly stable), U (linearly unstable).

Orbit O,,(m3) 20 Vg Uy v, T stability
02(1.2) 1.0220057827E+00 -2.7260000746E-01 -4.3209371195E-01 6.2947340717E-01 6.9057763983E-+00 U
05(0.6) 7.2379454056E-01 2.1745309714E-01 -2.4023509732E-01 4.8072135301E-01 8.2513531298 E+-00 U
03(1.0) 4.7687826428E-01 4.0213691007E-01 1.8035695129E-01 2.1044512814E-01 6.8316220363E+00 S
04(1.0) 1.0656465072E-01 4.1396073100E-01 4.7046903637E-02 4.4299118421E-02 7.2303054580E+00 S
06(1.0) 2.5738110869E-01 3.0241724398E-01 5.6056948094E-01 5.2896109217E-03 1.3654015842E+01 U
06(1.2) 4.4254976548E-01 6.3300867799E-01 1.7485764338E-01 -2.6069495427E-01 8.2359759431E+00 U

Table S2: The initial conditions, the periods T and the stability of 21 choreographic 3D periodic orbits having three
bodies moving along the same path in the case of the initial position 1 = (—1,0,0), ro = (1,0,0) and r3 = (0,0, 29)

with the initial velocities v1 = (vg, vy, ), V2 = (Vg, vy,

orbit: S (linearly stable), U (linearly unstable).

—v,) and v3 = (—2v,/mg, —2v,/ms, 0).

Stability of periodic

Orbit Oy, (ms) 20 Vg Uy v, T stability
O62(1.0) 1.4254560021E-01 3.4973952580E-01 6.0245969580E-01 5.6258558122E-03 4.4413258151E+01
O64(1.0)  2.4089819317E-01 2.9736744570E-01 5.5127998288E-01 6.4720700746E-03 4.5160913797E+01
031 1.3449345804E-01 3.3746407711E-01 5.3495391505E-01 1.7586983000E-03 8.2638396171E+01
Oa64 1.2527262314E-01 3.3812559500E-01 5.3478083136E-01 1.8426277977E-03 8.8847804260E+01
Ougs 1.9882559981E-01 3.5789268529E-01 5.3413197456E-01 -5.3389716378E-04 1.1603279244E+02
Os24 9.2921053426E-02 3.4199333600E-01 5.3399733168E-01 1.6826415762E-03 1.2041512314E+02
Os7a 2.4895906866E-01 3.3871794052E-01 5.5917249111E-01 -2.5336443257E-03 1.2535891398E+02

7.9082023338E-02
2.5059548392E-01

1.1019540397E-01

2.8653274947E-01
3.1883837350E-01

3.3940414208E-01

5.3295320774E-01
5.5145840743E-01

5.3491778263E-01

1.3330149482E-03
7.2285919945E-04

2.0614879729E-03

1.2885423891E+02
1.2927664287E+-02

2.0302355527E4-02

Og23 2.4884379653E-01 2.9277777970E-01 5.5413846299E-01 6.9945423951E-03 1.2975160287TE+02
Or35 1.4523478543E-01 3.3263557496E-01 5.2616069788E-01 -3.1374383107E-03 1.4041031143E+02
O793 1.5066856881E-01 3.3509372155E-01 5.3528992956E-01 1.2102376067E-03 1.4629315855E+02
Ooa1 1.3957142176E-01 3.3672076170E-01 5.3505271584E-01 1.6586446900E-03 1.5893652668E+02
01034(1.0)  7.9952100998E-02 3.9991383731E-01 5.2892786472E-01 2.6785166522E-03 1.6684804313E+02
O1062(1.0)  2.5387857578E-01 3.0855862740E-01 5.5506896654E-01 3.4527925512E-03 1.6887732550E+02
01114(1.0)  1.9719159455E-01 3.4208132539E-01 5.3782184023E-01 1.4597658877E-03 1.7279868625E+02
O1172(1.0)  6.3233041014E-02 3.4473818853E-01 5.3330581391E-01 1.2154707447E-03 1.7726783502E+02
O1265(1.0)  6.1061814942E-02 3.4489838389E-01 5.3326623797E-01 1.1774765759E-03 1.8358838190E+02
01414(1.0)  4.9792913732E-02 2.6873050476E-01 5.2603515916E-01 3.2150647009E-04 1.9557410885E+02
O1488(1.0)  1.5788544119E-01 3.3561402713E-01 5.3228206363E-01 -2.2004697254E-03 2.0197023210E+02
(1.0)
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Table S3: The initial conditions, the periods 7" and the stability of some 3D periodic orbits having two bodies moving
along the same path in the case of the initial position r; = (—1,0,0), 7o = (1,0,0) and r3 = (0,0, 20) with the initial
velocities v1 = (vg, vy, V,), V2 = (Vg,0y, —v;) and vz = (—2v;/ms, —2v,/ms,0). Stability of periodic orbits: S (linearly
stable), U (linearly unstable).

Orbit O, (m3) 20 Vg Uy v, T stability
06(0.6) 6.1460435884E-01 1.0381048232E-01 7.2494633230E-02 5.8966905104E-02 7.9743488400E+00
O96(1.1) 6.1717279647E-01 5.0563910986E-01 2.8923907397E-01 6.3478431464E-03 2.7381502412E+01
048(0-5) 2.5356269746E-01 3.0249330624E-01 7.6131511629E-02 -3.9679960521E-03 9.0118410122E+01
0267(0-9) 5.7288742602E-01 3.2057036195E-01 2.3346447921E-01 3.1450924543E-03 8.6966037898E+01
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Table S4: The high accuracy (in 70 significant digits) initial condition and the period T of the linearly stable periodic
orbit O3(1.0) in the case of the initial position r; = (—1,0,0), r2 = (1,0,0) and r3 = (0,0, 29) with the initial velocities
V1 = (Vg, Uy, Vz), V2 = (Ug, Uy, —V,), v3 = (—2v,/m3, —2v,/m3,0) and mg = 1.0.

Orbit 03(1.0)

20 4.768782642803115460616110933545915887541644925960260369253641303299294 -1
Vg 4.021369100747237493832253390929016257978052115111599603699588130212840E-1
Uy 1.803569512862586641317199478891917026060004921964179954624832790547685E-1
U, 2.104451281378731221497174690764795110575771159319962594676582115390083E-1

T 6.831622036284445040766025062746064085737914286107653347931784678966507




