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Introduction and de�nitions.

This is a review of the surroundings of the Conjecture �a gap in the Unifying
view on ODEs, AD and elementary functions [1]. This review is for those
wishing to immerse in and solve this problem.
In order to better reveal parallels and relations between various ideas, this

report contains several tables and diagrams emphasizing those relations - as
an homage to my late mother Ida Levi, a Physics teacher from God, striving
to perfection in every of her lectures and presentations, often resorting to
tables.
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Conventions

� All along this review we are speaking about holomorphic functions and
their derivatives in the complex space. We use the acronyms ODEs for
Ordinary Di¤erential Equations, and IVP for Initial Value Problem.

� We are to deal with rational and polynomial systems of several �rst
order ODEs, and with stand alone n-order ODEs.

� We distinguish explicit ODEs such as

x(n) = F (t; x; :::; x(n�1)) or

y0 = G(t; x; y; z; :::)

from implicit ODEs
P (t; x; :::; x(n)) = 0

� Speaking about explicit rational ODEs

x0 =
g(t; x; y; z; :::)

h(t; x; y; z; :::)
or (1)

x(n) =
P (t; x; :::; x(n�1))

Q(t; x; :::; x(n�1))

we presume that no denominator is identical zero, i.e. h or Q may
disappear only at a subset of the phase space. We understand that
rational ODEs (1) are equivalent to implicit polynomial ODEs

x0h(t; x; y; z; :::)� g(t; x; y; z; :::) = 0 or (2)

x(n)Q(t; x; :::; x(n�1))� P (t; x; :::; x(n�1)) = 0

which, unlike the rational (1), are de�ned at all points of the phase
space (t; x; y; z; :::) 2 Cm+1 or (t; x; :::; x(n�1)) 2 Cn+1.

� If the denominator h(t0; x0; y0; z0; :::) = 0 in (1), this explicit rational
ODE is called singular at a point (t0; x0; y0; z0; :::), whose meaning
requires a special de�nition (below).

� Unlike a rational ODE (1), an implicit ODE P (t; x; :::; x(n)) = 0 is
de�ned at all points of its phase space, but it is called singular at a

point (t0; x0; x1; :::; xn) if
@P

@Xn

����
(t0; x0; x1;:::; xn)

= 0 ( Xi = x
(i)).
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� When we say that a holomorphic solution x(t) satis�es a singular at t0
rational ODEs (1), this means that x(t) satis�es the respective implicit
polynomial ODE (2) (while the inde�niteness 0=0 in the right hand side
of (1) may be resolved via obtaining the limit).

These are the conventions for the rest of this report.

The Conjecture

In either of the two equivalent forms below, the Conjecture claims that...
For any component, say x(t), of an explicit system in
x(t); y(t); z(t); ::: of m 1st order ...
... rational ODEs

x0 =
g1(t; x; y; z; :::)

h1(t; x; y; z; :::)

y0 =
g2(t; x; y; z; :::)

h2(t; x; y; z; :::)
(3)

z0 =
g3(t; x; y; z; :::)

h3(t; x; y; z; :::)
: : : : :

regular at the initial point
(t0; a; b; c; :::), ie. all the
denominators hkjt=t0 6= 0 so
that the solution x(t) ex-
ists having all the derivatives
x(i)jt=t0 = ai; i = 0; 1; 2; :::,

... polynomial ODEs

x0 = p1(t; x; y; z; :::)

y0 = p2(t; x; y; z; :::) (4)

z0 = p3(t; x; y; z; :::)

: : : : :

regular at all points (t0; a; b; c; :::)
of its phase space so that at any
initial point t0 the solution x(t)
exists having all the derivatives
x(i)jt=t0 = ai; i = 0; 1; 2; :::,

there exists an explicit n-order rational ODE

x(n) =
F (t; x; x0; :::; x(n�1))

G(t; x; x0; :::; x(n�1))
(5)

or an implicit polynomial ODE

Q(t; x; x0; :::; x(n)) = 0 (6)

satis�ed by x(t); x(i)jt=t0 = ai; i = 0; 1; 2; :::, both (5) and (6) being
regular at the initial point (t0; a0; :::; an).

3



As of the moment (October, 2021), this Conjecture is neither proved nor
disproved, though a few weaker versions of it were proved.
For example, if the Conjecture is simpli�ed dropping the requirement of

regularity in ODEs (5) or (6), the so modi�ed version is true and proved
(Appendix 1).
The Theorem in Appendix 1 proves the Conjecture excluding some subset

of the initial values. Namely, the claim of the Conjecture for the polynomial
ODEs (4) applies to the initial points in the entire phase space Cm+1 =
f(t0; a; b; c; :::)g, but the Theorem is proved for Cm+1nF , where

F = f(t0; a; b; c; :::) j q(t0; a; b; c; :::) = 0g
is a manifold, q being some incidental polynomial emerging in the method
of the proof.

De�nitions of elementariness.
Vector elementariness Scalar elementariness

De�nition 1. A function x(t) (as
a part of a vector (x; y; z; :::) )
is called vector-elementary at and
near a point t = t0, if it satis�es
systems (3) or (4).

De�nition 2. A function x(t)
is called scalar-elementary at and
near a point t = t0, if it satis�es
an ODE (5) or (6).

De�nition 3. A holomorphic at
t = t0 vector-function (x; y; z; :::)
is called non-elementary, or vio-
lating, or losing its vector elemen-
tariness at t = t0 if in its neigh-
borhood (excluding t = t0 itself)
vector-function (x; y; z; :::) can
satisfy rational system (3) only if
(3) is singular at t = t0. A
vector-function which cannot sat-
isfy any rational system (3) at all is
called non-elementary everywhere.

A singular at t = t0 vector-function
(x; y; z; :::) is considered non-
elementary at t = t0.

De�nition 4. A holomorphic
at t = t0 function x(t) is
called non-elementary, or violat-
ing, or losing its scalar elemen-
tariness at t = t0 if in its
neighborhood (excluding t = t0 it-
self) function x(t) can satisfy ratio-
nal ODE (3) only if (3) is singular
at t = t0. A function which can-
not satisfy any rational ODE (3) is
called non-elementary everywhere.

A singular at t = t0 function x(t)
is considered non-elementary at t =
t0.
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Functions whose scalar elementariness is violated at isolated points do
exist and are discussed further along this report.

Remark 1 Elementariness of a function x(t) at some point t0 does not mean
as though arbitrarily chosen system (3) satis�ed by x(t) is necessarily regular
at t0. As the Appendix 4 demonstrates, any ODE or their system may be
intentionally made singular at any point. That is why an arbitrarily chosen
ODEs satis�ed by x(t) may happen to be singular despite elementariness of
x(t) at the point. For example elementary function x(t) = tn at t = 0

satis�es both regular ODE x0 = ntn�1and singular ODE x0 =
nx

t
.

Remark 2 In order to establish elementariness of a function x(t) at a point
t0 (in either sense) it�s necessary to produce a system (3) satis�ed by x(t) and
regular at t0. From t0, by integrating the ODEs, a property of elementariness
may be analytically continued towards any point t where the denominators hk
or G remain nonzero. On the contrary...

Remark 3 In order to establish scalar non-elementariness of a function x(t)
at a point t0 it�s not su¢ cient to merely produce an ODE (3) satis�ed by x(t)
and singular at t0: the ODE with a singularity at t0 may happen to be re-
placeable with a regular one. It�s a challenge to prove non-elementariness
of a function. Besides the Euler�s Gamma function (non-elementary in ei-
ther sense at all points), among other functions, so far only scalar non-
elementariness was discovered for a special kind of functions (discussed be-
low).

As any n-order ODE (5) is trivially transformable into a system of n �rst
order ODEs (3), the following relationships between these de�nitions above
take place:

� Vector elementariness follows from scalar elementariness;

� Scalar non-elementariness follows from vector non-elementariness.

However it is not known ...

� Whether scalar elementariness follows from vector elementariness;

� Whether vector non-elementariness follows from scalar non-elementariness.
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From rational to polynomial systems of ODEs.

� At a regular point. As it was shown in [1], at any point t = t0 of
its regularity a rational ODE or a rational system of ODEs (3) may
be converted into a wider system of polynomial ODEs (4) in the right
column of the Conjecture

x0 = P (t; x; y; z; :::)

y0 = Q(t; x; y; z; :::) (7)

:::::::::::::;

or even further into the special polynomial systems in Table 2 (5-7).
Therefore the rational regular system (3) in the Conjecture (and in the
de�nition of vector elementariness) at a regular point may be replaced
with the polynomial system (7) and special polynomial systems thanks
to the Fundamental transforms (Table 2).

� At a singular point. Suppose a holomorphic function x(t) satis�es
a rational ODE (5) singular at t = t0, and t0 really is a point of
violation of the scalar elementariness of x(t) so that it�s impossible to
�nd a regular rational ODE satis�ed by x(t) at t = t0, x(k)jt=t0 = ak,
where G(t0; a0; :::; an�1) = 0. In this scenario we also can transform
ODE (5) into a poly system at any point (t1; b0; :::; bn�1) where
G(t1; b0; :::; bn�1) 6= 0. Consider some point (t1; b0; :::; bn�1); t1 near
t0; t1 6= t0; bk = x(k)jt=t1 such that G(t1; b0; :::; bn�1) 6= 0. A solution
of this regular IVP is the same x(t). Now we can transform (5) as in

the regular case. Introduce a new variable y =
1

G(t; x; x0; :::; x(n�1))
.

Then

x(n) = yF (t; x; x0; :::; x(n�1)); x(k)jt=t0 = ak; k = 0; 1; :::

y0 = �y2dG
dt

(8)

which can be further transformed into the format of the system (4)
of �rst order poly ODEs. We obtained a poly system (8) having the
solution x(t), but it�s easy to show that while integration of the IVP
for x(t) in the system (8), the point (t0; a0; :::; an�1) is unreachable
because of singularity of y at t = t0.
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If we succeeded to obtain a poly system (8) for x(t) in which the point
(t0; a0; :::; an�1) were reachable, that would be a counterexample disproving
the Conjecture. However, if a counterexample exists, the method of trans-
formation above does not deliver it because the point t = t0 happens to
be unreachable in speci�cally this system (8) obtained via speci�cally this
known method of transformation. If we proved that the point t = t0 is
unreachable in any poly system (4) satis�ed by x(t), that would be a proof
of the Conjecture. The following Claim therefore is ...

An alternative form of the Conjecture

Claim 1 Let a holomorphic point t0 in a function x(t) be a point of violation
of scalar elementariness. Then in any poly system (7) satis�ed by x(t) at least
one of the components y; z; ::: of (7) must be singular at the point t0 making
t0 unreachable during integration of the system (7) of ODEs.

Explicit polynomial systems of ODEs (7) do not have singular points in
their phase space (though their solution vectors may have singularities). This
fact has an interesting implication.

Remark 4 The concept of vector elementariness of a function x(t) at a
point is based on regularity of ODEs at the respective point of their phase
space. That is why the fact of elementariness may be expressed either via
rational (3) or polynomial ODEs (7). However the opposite concept of non-
elementariness of a function x(t) is based on singularity of ODEs at the
respective point of their phase space. Therefore non-elementariness may be
expressed only via rational ODEs (3) where the denominator disappears at
some points of the phase space.

Evolution of the concept of elementary functions

The predecessor of this de�nition of the vector-elementariness was the def-
inition by Ramon Moore in the 1960s. However Moore�s de�nition was not
linked to a point, nor did it require regularity of the right hand sides of the ra-
tional ODEs. Moore�s de�nition de�ned elementariness for a vector-function
in its entire domain of existence.
The classical (conventional) de�nition of elementary functions in the 19th

century by Liouville also applied to the entire domain of existence of the
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functions. It�s easy to demonstrate that all functions elementary by Liouville
are also elementary by Moore.
We ought to re�ne the concept of elementariness making it speci�c to

a neighborhood of a point because of the new results [2], namely, that
scalar elementariness may be lost at isolated points in some functions like
et � 1
t

or
sin t

t
at t = 0 (by Liouville and Moore they are merely elementary

everywhere). The loss of elementariness at a point is proved only for scalar
elementariness, and it is not known whether these functions lose also vector
elementariness at the same (or other) point �an open question depending
on the Conjecture.
And vice versa, there exist other properties for which the proofs are known

only for vector-elementariness [1]. They are...

� Closeness of the class of vector-elementary functions in respect to the
superposition and the inverse vector-functions, and ...

� The Fundamental transforms �see Table 2.

We will discuss the loss of elementariness at a point later in this review.
It�s worth noting that functions may be non-elementary also at all points

of their domain by any of the above de�nitions. At the moment the only
known example of a function non-elementary at all points is the Euler�s
Gamma function and Gamma integral [1], whose non-elementariness follows
from the Hölder theorem about the Gamma function.
The following table summarizes the facts presented above:
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Scalar elementariness Vector elementariness
Follows from the scalar elemen-
tariness, but the vice versa state-
ment is not yet proved.

The proofs of the fundamental
properties not known

The fundamental properties
proved: the closeness of the
class of vector-elementary
functions in respect to the
superposition and the inverse
vector-functions, and the fun-
damental transforms (see the
Table of transforms)

Not known if contains all Liou-
ville elementary functions

Contains the conventional Li-
ouville elementary functions

Is lost at isolated points in some

functions like
et � 1
t

or
sin t

t
at

t = 0.

Not known if it is lost at these
points

The � function and � integral are non-elementary at all points in
any sense thanks to the Hölder theorem.
Table 1. Comparison of the facts which follow from each of the two

de�nitions
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(1) An explicit �rst order system of ODEs whose right-hand side
is a vector-elementary function converts to. . .
(2) A system of ODEs whose right-hand sides are
rational functions. At regular points it further converts to. . .
(3) A canonical system: an
explicit system of algebraic
and di¤erential equations for
computing n-order deriva-
tives requiring O(n2) opera-
tions.

(4) A system, whose right-
hand sides are polynomi-
als. It further converts to. . .

(5) Polynomial ODEs of de-
gree � 2. It further con-
verts to polynomial ODEs of
degree 2 with ...
(6) ...with
coe¢ cients
0, 1 only
(Kerner)

(7) ... with
squares only
(Charnyi)

Table 2. Fundamental transforms

The Conjecture: discussion

The Conjecture is not merely an isolated open question in itself, but it rep-
resents a gap in the Unifying View [1].
The Conjecture claims that the scalar elementariness at a point does

follow from the vector elementariness at the same point. The vice versa
statement is trivial, therefore the Conjecture (if true) establishes equivalence
between the vector and scalar elementariness.
It will be further proven (Appendix 1) that conversion from the rational

(3) or poly system (4, 7) to an implicit polynomial ODE (6) or a rational ODE
(5) (singular or regular at t0) is always possible, so that it�s a requirement of
regularity of the ODE (5) or (6) which is a stumbling block.

Remark 5 The phase space of initial points (t0; a0; b0; :::) of the poly sys-
tem (7) is Cm+1, and the phase space of points (t0; a0; a1; :::) of rational
ODE 5) is Cn+2. The function x(t) in the Conjecture therefore establishes a
mapping (t0; a0; b0; :::) 7�! (t0; a0; a1; :::)
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There are the following options for a function x(t) within the setting of
the Conjecture.

� Either the function x(t) does not have any points of violation of its
scalar elementariness at all, so that for any given point there must exist
a regular ODE (5) satis�ed by x(t) (no matter whether we can produce
such an ODE). For this case the Conjecture therefore is true.

� Or, being scalar elementary at t0, the solution x(t) does have some
point t1 6= t0 of violation of its scalar elementariness. Then in order
to prove the Conjecture we must produce a regular at t0 rational ODE
(5) (or prove its existence without production). What the Conjecture
means in this case is that the point of non-elementariness (t1; a0; a1; :::)
of the phase space of (5) is an image of no point (t0; a0; b0; :::) of the
phase space of the polysystem (7): otherwise the polysystem (7) and
x(t) would be a counterexample demonstrating that the Conjecture is
false.

� Or t0 is a point of violation of scalar elementariness of x(t) so that
the polysystem (7) and x(t) would be a counterexample demonstrating
that the Conjecture is false.

The following gap diagram shows the place of the Conjecture within
the general problem of transforming a system of ODEs into one ODE and
vice versa.
Given...
a system of m explicit �rst
order ODEs at a regular
point

vs. one n-order ODE in u1 at a
regular point8<:

. . . . .
u0k = gk(t; u1; :::; um)
. . . . .

u
(n)
1 = f(t; u1; :::; u

(n�1)
1 )

the following transformations "!"take place:

Source                                    Target
The target is…

Rational Holomorphic

One n­order ODE → System of m 1st order ODEs Yes Yes

System of m 1st order ODEs →
One regular n­order ODE ?

YesOne possibly singular
n­order ODE

Yes

Source                                    Target
The target is…

Rational Holomorphic

One n­order ODE → System of m 1st order ODEs Yes Yes

System of m 1st order ODEs →
One regular n­order ODE ?

YesOne possibly singular
n­order ODE

Yes
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where "One possibly singular n-order ODE" means that the target ODE may
be either regular or singular (its regularity is not guaranteed). The yellow
gap with a question mark stands for the Conjecture.
A possibility of the conversion from a "System of m 1st order ODEs" into

"One (possibly singular) n-order ODE" is proved in the Theorem (Appen-
dix 1)

Remark 6 As the diagram shows, if we do not ask for the rational right
hand side in the ODE (5) admitting an arbitrary holomorphic right hand side
instead, transformation of an explicit system (3) into one explicit ODE (of
�rst order at that!) would be always possible, albeit in a trivial tautological
sense. Namely, consider the holomorphic solution x(t) of system (3), and
denote '(t) = x0(t): Then the ODE x0 = '(t) is the required holomorphic
ODE. Moreover...

Remark 7 Due to the properties of holomorphic functions, the singular
points of this very special right hand side '(t) of this ODE (whose phase
space is merely (t)) are the same as the singular points of its solution x(t):
Generally, however, the phase space (t; a0; a1; :::) of ODE (5) is of a higher
dimension, and its set of singular points may di¤er from the set of singular
points of the solution x(t). In particular, polynomial right hand sides (7) have
no singular points, "hiding" all possible singular points of the solution x(t).
The polynomial right hand sides may hide also singular points of right hand
sides of a rational system (3) which was transformed to a wider polynomial
system (7).

Points where elementariness is violated

In the paper [2] a new type of special points in holomorphic functions was
discovered: the points where functions lose their property of being scalar
elementary while being holomorphic. In particular the function

x(t) =
et � 1
t

; x(k)jt=0 =
1

k + 1
; k = 0; 1; :::; (9)

the solution of the ODE

tx0 � tx+ x� 1 = 0; or x0 = x� x� 1
t
:
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At the point t = 0 x(t) can satisfy no explicit rational ODE regular at this
point, nor can it satisfy any explicit polynomial ODE

x(n+1) = P (t; x; x0; :::; x(n)) (10)

indeed. The same is true for in�nitely many other functions1 at t = 0 such
as

sin t

t
; cos

p
t;

log(1 + t)

t
(11)

as well as for the solution x(t) of the IVP tx00�x = 0; xjt=0 = 0; x0jt=0 = 1:
The existing proof of violation of scalar elementariness capitalizes on a

speci�c general pattern of the values of the derivatives of such functions �
see the Corollary 2 in [2]. Those values are irreducible rational numbers with
denominators passing through all prime numbers.

Remark 8 Most of the examples of the points of violation of scalar elemen-
tariness here look like inde�niteness in a fraction2. However not any irre-
ducible fraction with an inde�niteness presents a violation of elementariness.
For example the function

x(t) =
+
p
1 + t� 1
t

; x(0) =
1

2
(12)

does not violate elementariness at t = 0 because it satis�es an ODE

x0 =
x2

2tx+ 2
; x(0) =

1

2
:

regular at t = 0. The inde�niteness in the fraction (12) is a consequence
that x(t) satis�es an algebraic equation tx2 + 2x � 1 = 0; and t passes
through zero in the leading monomial. Violation of scalar elementariness

1All the functions (11) lose their scalar elementariness at t = 0, however it is not known
if they lose their vector elementariness at this point. They would, if the Conjecture is true
so that the equivalence between the scalar and vector elementariness takes place.

2Speaking about an irreducible rational function
f(x; y; z; :::)

g(x; y; z; :::)
, it is elementary at all

point where g(x; y; z; :::) 6= 0: At the points where g(x; y; z; :::) = 0 but f(x; y; z; :::) 6= 0
it is surely singular. For multivariate irreducible function f=g it is possible that both
f(x; y; z; :::) = g(x; y; z; :::) = 0 making an inde�niteness. However it is provable, that
multivariate fractions f=g are singular also at the points of inde�niteness. By De�nition,
the concept of elementariness applies only at regular points of (vector-) functions.
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happens not necessarily in fractions. The function x(t) = cos
p
t (courtesy

of George Bergman), being not a fraction, also demonstrates violation of
elementariness: at the singular point of

p
t - while x(t) is holomorphic at

t = 0. However, for most of the functions following the pattern in [2] no
�nite expressions or the ODEs are known. It�s worth noting that the two
other examples in (11) represent the remarkable limits, the third one being
more recognizable in the form u(t) = (1 + t)1=t; u(0) = lim

t!0
(1 + t)1=t = e.

However the sequence u(k)(0); k = 0; 1; 2; ::: (unlike that for lnu(t) at
t = 0) does not follow the pattern in [2] so that it is not known if u(t)
loses elementariness at t = 0: More examples of functions with points being
suspects for loss of scalar elementariness are in [4, 5].

Except at point t = 0; all these functions satisfy rational ODEs, and it
was proven that any such rational ODE must be singular at point t = 0
meaning that none of them may be an explicit polynomial ODE (10).

Corollary 1 If a function x(t) has a point of violation of its scalar elemen-
tariness, x(t) can satisfy no explicit polynomial ODE (10).

The equivalent form is...

Corollary 2 If a function x(t) satis�es an explicit polynomial ODE (10),
x(t) is scalar elementary in its entire domain of existence (i.e. it has no
points of violation of its scalar elementariness).

However the vice versa statement is open.

Proposition 1 (an open statement) If a function x(t) is scalar elementary
in its entire domain, it must satisfy some explicit polynomial ODE (10)
rather than a rational ODE (5) according to the De�nition.

If a functions x(t) is scalar elementary in the entire domain of its exis-
tence, it means that the denominator g(t; x; :::; x(n�1)) in its rational ODE
(5) must never disappear on x(t) in its entire domain. This seemingly sug-
gests as though the denominator must be a nonzero constant �as the image
of complex functions usually is the entire complex space (unless the function
is a constant), so that the Proposition seems true. However :

1. Either the denominator g of the rational ODE (5) actually is constant
1 so that the ODE is polynomial �as the Proposition claims;
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2. Or the function g(t; x; :::; x(n�1)) varies but never reaches zero on
x(t) because zero happened to be the excluded (lacunary) value of
the complex function g (in accordance with the Picard theorem) �see
the Example below. It�s because of the case (2) that the Proposition
remains an open statement.

Example 1 (illustrating case (2)) Observe that for the function x(t) � x0 �
x00 = et the lacunary value is zero and x(t) satis�es the following ODE

x00 =
(x0)2

x
; x(0) = x0(0) = 1:

Its denominator never disappears on x(t) thus this ODE never turns singular.
Though in this example we do know the alternative polynomial ODE x0 =
x satis�ed by x(t) (as the Proposition claims), for an arbitrary x(t) scalar
elementary in its entire domain we do not know whether the Proposition is
true.

In accordance with Corollary 1, a function losing its scalar elementariness
at some point cannot satisfy any explicit poly ODE (10) at all. However it can
satisfy a system of explicit poly ODEs (7). (Any system of explicit poly ODEs
"hides" both the points of singularity of the solution x(t); and the points
where the denominator of the ODE disappears, because such points happen
to be unreachable in a polynomial system - see the following example).

Example 2 The function x(t) =
et � 1
t

; losing its scalar elementariness at

t = 0; cannot satisfy an explicit polynomial ODE (10), however it can satisfy

a system of �rst order poly ODEs. Just introduce y(t) =
1

t
; y0 = �y2; and

then the x(t) satis�es an IVP for a polynomial system (say at an initial point
t = 1)

x0 = x� xy + y; xjt=1 = e� 1
y0 = �y2; yjt=1 = 1:

Observe: while the stand-alone function x(t) as a holomorphic function may
be analytically continued into the point t = 0 via its Taylor expansions, x(t)
cannot be continued into this point via integration of this IVP because of a
singularity of y(t) at the point t = 0 unreachable for y(t) �and therefore
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unreachable for the entire system. Also observe, that if the Conjecture claimed
that the target ODE were explicit polynomial rather than explicit rational
(5), the Conjecture would be false, as this Example demonstrates: here x(t)
is the solution of a polynomial system of ODEs, but it cannot be a solution
of one explicit polynomial ODE (10).

The in�nite fundamental sequence of polynomial equations

The polynomial system (7) allows obtaining the in�nite sequence of poly-
nomial equations (the so called Fundamental Sequence)

x0 = P1(t; x; y; z; :::) y0 = Q1(t; x; y; z; :::) z0 = ::: :::
:::
x(k) = Pk(t; x; y; z; :::)
x(k+1) = Pk+1(t; x; y; z; :::)
:::

(13)

where the following recursive relations take place3:

Pk+1(t; x; y; z; :::) =
@Pk
@t
+
@Pk
@x
x0+

@Pk
@y
y0+::: =

@Pk
@t
+
@Pk
@x
P1+

@Pk
@y
Q1+:::

(and the similar in�nite sequence may be written also for y(k); z(k); ::: if we
needed it).

Remark 9 According to these recurrent relations, generally the degrees of
polynomials Pk grow with k (unless all the right hand sides P1; Q1; ::: of (7)
are polynomials of a degree � 1). In particular, if the right hand sides of (7)
are polynomials of degree 2, the degrees of Pk increase by � 1 because the

operators
@

@t
;
@

@x
,
@

@y
, ... reduce the degree of the polynomials by 1, while

the factors P1 , Q1 possibly increase it by 2 so that the degrees of Pk increase
by a value � 1:

Remark 10 For the further considerations, we can assume that there are
in�nite number of nonzero values among fx(k)jt=t0g and therefore no Pk is
a zero polynomial. If there are only �nite number of nonzero values among
fx(k)jt=t0g, the function x(t) must be a polynomial so that the Conjecture
is obviously true in such a case.

3For the polynomial system in squares only the recurrent relations are simpler - see
Appendix 5.
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Remark 11 The relation (13) may be viewed...

� either as ODEs x(k)(t) = Pk(t; x(t); y(t); z(t); :::) where the variables
of the polynomials Pk are not independent, being speci�c functions -
the solutions of the system (7);

� or as relations x
(k)
0 = Pk(t0; x0; y0; z0; :::) where the variables of

the polynomials Pk are independent variables - the points of the phase
space of the system.

Remark 12 The fundamental sequence (13) Pn = (P1; P2; :::; Pn) maps
the phase space (t0; a0; b0; c0; :::) of the system (7) onto the phase space
(t0; a0; a1; a2; :::; an) of the ODE (5):

(t0; a0; b0; c0; :::)
Pn7�! (t0; a0; a1; a2; :::; an);

Pn: C
m+1 ! Cn+2:

At that, the general solutions x(t; t0; a0; b0; c0; :::) and x(t; t0; a0; a1; a2; :::)
are di¤erent multivariate functions, but for the speci�c solutions x(t)j(t0; a0; a1; a2;:::) =
x(t)j(t0; a0; b0; c0;:::):

Remark 13 The source of the mapping is the phase spaceCm+1 = f(t0; a0; b0; c0; :::)g
of the poly system (7). If we �x certain n, the fundamental sequence (13)

maps Cm+1 Pn! f(t0; a0; a1; a2; :::; an)g and the image In = Pn(C
m+1)

is some m + 1 dimensional manyfold: In � Cn+2, but In 6= Cn+2 so
that Cn+2nIn is not empty. Therefore for the target ODE (5) some vec-
tors of initial values (t0; a0; a1; a2; :::; an) 2 Cn+2nIn correspond to no
initial values (t0; a0; b0; c0; :::) of the system (7). Or in other words,
some particular solutions x(t)j(t0; a0; a1; a2;:::) of the target ODE (5) match
no solution x(t)j(t0; a0; b0; c0;:::) of the source system (7). In particular, if
(t0; a0; a1; a2; :::; an) is a point of violation of scalar elementariness and
the Conjecture is true, the point (t0; a0; a1; a2; :::; an) corresponds to no
initial values of the system (7).

As shown in Appendix 1, a rational ODE (5), regular or singular, may be
always obtained from the fundamental sequence. Then, utilizing the expres-
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sions for x(k) in the fundamental sequence

Pn(t; x(t); y(t); z(t); :::) = x
(n) =

f(t; x; x0; :::; x(n�1))

g(t; x; x0; :::; x(n�1))
=

=
f(t; x; P1(t; x; y; z; :::); :::; Pn�1(t; x; y; z; :::))

g(t; x; P1(t; x; y; z; :::); :::; Pn�1(t; x; y; z; :::))
=

=
u(t; x(t); y(t); z(t); :::)

v(t; x(t); y(t); z(t); :::)
: (14)

where u and v are polynomials over dependant variables.
This relation (14) demonstrates the singularities in the target rational

ODE (5) either as a subset g(t0; a0; :::; an�1) = 0 of its phase space
(t0; a0; :::; an�1), or as a subset v(t0; a0; b0; c0; :::) = 0 of the phase space
(t0; a0; b0; c0; :::) of the system (7).
We will see that the target ODE (5) in the Conjecture is not unique, and

there are many ways of obtaining it, though neither of the ways we know so
far guarantees that the obtained ODE is regular at the given point: otherwise
the Conjecture would be proved.

Conclusion 1 If the Conjecture is true and the target rational ODE (5) was
found for the given initial point (t0; a0; b0; c0; :::)

P7�! (t; a0; :::; an�1) so
that at this point both v(t0; a0; b0; c0; :::) 6= 0 and g(t; a0; :::; an�1) 6= 0;
generally the polynomial v still disappears for a manifold of other points
(t; a; b; c; :::) where v(t; a; b; c; :::) = 0: The target ODE (5) regular at
(t0; a0; b0; c0; :::) may happen to be singular at other points (t; a; b; c; :::).

Example 3 (further illustrating how the Conjecture "works"). Consider a
polynomial system

x0 = x� xy + y (15)

y0 = �y2

(satis�ed by the earlier introduced function (9) x(t) =
et � 1
t

). There exist

many ways for obtaining the target ODE in x. In this special case we can
obtain the general solution for y. Choose any initial value (t0; x0; y0) 2 C3 of
the phase space of the system, and write down the solution component y in
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the form y =
y0

y0(t� t0) + 1
for all y0: For y0 6= 0 y =

1

t+
1

y0
� t0

. Then

the corresponding target ODE in x containing t0; y0 as parameters is

x0 = x� y0(x� 1)
y0(t� t0) + 1

for any y0, or (16)

x0 = x� x� 1

t� t0 +
1

y0

= x� x� 1
t+ �

for y0 6= 0; � =
1

y0
� t0:

The function (9) is de�ned by a special IVP for the system (15) introduced
earlier. Other IVPs of the system (15) de�ning (9) or its shifted version are
explained below. Properties of particular solutions x(t); y(t) belonging to the
general solution x(t; t0; x0; y0; :::); y(t; t0; x0; y0; :::) depend on certain
subsets of the phase space.

Case 1 Any y0 6= 0 and any t0, x0 specifying therefore nonzero solutions

y(t) (hyperbolas). Denote � =
1

y0
� t0 so that t0 + � =

1

y0
and the subset

S1 = f(t0; x0; y0) j y0 6= 0g � C3;

meaning that S1 = C3nfhyperplane y0 = 0g: The ODE (16) takes form

x0 = x� x� 1
t+ �

regular at t = t0 but singular at t = ��: At that if lim
t!��

x(t) = 1, the solu-

tion x(t) is the �-shifted entire function (9) x�(t) =
et+� � 1
t+ �

; x�(��) = 1:
The initial values (t0; x0) de�ning the shifted solutions x�(t) are the points�
t0; x0 =

et0+� � 1
t0 + �

�
= (t0; (e

1=y0 � 1)y0): Observe that though lim
t0+�!0

x0 =

lim
y0!1

x0 = 1; this x0 does not reach 1 for whichever y0: Consider the fol-

lowing two subsets of S1.

1. A subset S11 � S1, a subset of points (t0; x0; y0) belonging to the

�-shifted curve x�(t) =
et+� � 1
t+ �

S11 = f(t0; x0; y0) j x0 = (e1=y0 � 1)y0; y0 6= 0g:
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For initial values (t0; x0; y0) 2 S11 the solution is x�(t) whose
scalar elementariness is violated at the point P� = (t = ��; x = 1) =

(��; 1) =
�
t0 �

1

y0
; 1

�
of the phase space of the ODE (16). However

the corresponding point
�
t0 �

1

y0
; 1; y0

�
of the system (15) does not

belong to S11:

2. A subset S12 = S1nS11 of points (t0; x0; y0) outside of the �-shifted

curve x�(t) =
et+� � 1
t+ �

so that x0 6= (e1=y0 � 1)y0: For the subset S12
the solution x(t) di¤ers from the �-shifted (9) so that the numerator
(x�1)jt=�� 6= 0 - therefore the solution x(t) must have a singularity at
t = �� (instead of the point of holomorphy whose scalar elementari-
ness is violated). Unlike the case (1), now all solutions for S12 have a

singularity at t = �� = t0 �
1

y0
.

Case 2 y0 = 0 and any t0, x0; meaning the zero solutions y(t): The subset

S0 = f(t0; x0; y0) j y0 = 0g � C3

is a complex hyperplane in C3: Then y(t) � 0 so that the ODE (16) takes
the form x0 = x; whose solution is x(t) = x0e

t�t0 : This ODE is regular at
all points so that its solutions x(t) do not have points of violation of scalar
elementariness.

Conclusion 2 The phase space of the system (15) is f(t0; x0; y0)g = C3,
and the respective solutions are x(t; t0; x0; y0): The phase space of the family
of ODEs (16) (depending on the parameter y0) is f(t0; x0)g = C2 and the
respective solutions are x(t; t0; x0; y0). The points of violation of scalar

elementariness in solutions of ODEs (16) are
�
t0 �

1

y0
; 1; y0

�
but no point

(t0; x0; y0) 2 C3 maps into them.

This particular target ODE (16) illustrates the Conjecture in the following
way.

� ODEs (16) are rational and regular for any initial value (t0; x0; y0) 2
C3 of the system (15) as the Conjecture claims.
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� As the ODEs (16) corresponding to all point (t0; x0; y0) 2 C3 are regu-
lar, it may seem as though x(t) does not have any points of violation of
its scalar elementariness, but it does. Violation of scalar elementariness

of x(t) takes place at the point
�
t0 �

1

y0
; 1; y0

�
which is an image

of no point (t0; x0; y0):

� The family of ODEs (16) also illustrates the fact that di¤erent tar-
get ODEs (5) correspond to di¤erent initial points (t0; x0; y0) of the
polysystem (7).

However the target rational ODE (5) could be obtained in another way.
As the ODE (16) happened to explicitly depend on the corresponding initial
points t0; y0, we can rid of them applying di¤erentiation and �nally obtaining
the ODE

x00(1� x) = x0 � 2(x0)2 + 2xx0 � x2:
This ODE is remarkable in that it is satis�ed by polynomials x(k) = Pk(t; x; y); k =
1; 2; ::: from the fundamental sequence (13). Parameters of the initial vector
(t0; x0; y0) 2 C3 do not occur in this ODE so that the same ODE serves as a
target ODE for any point (t0; x0; y0) 2 C3. Unlike the ODE (16), this ODE
however is singular for the subset of the initial values of (15) where x0 = 1,
therefore if instead of the (16) we happened �rst to obtain this ODEs, it
could not illustrate the Conjecture.

Example 4 Consider the polynomial system

x0 = nxy

y0 = �y2

for natural n, whose general solution at any initial point (t0; x0; y0) is known:

x = x0(y0(t� t0) + 1)n; y =
y0

y0(t� t0) + 1
. Again, an arbitrary process of

obtaining the target ODE may provide di¤erent yields.

1. A family of ODEs depending on the parameter y0

x0 =
nxy0

y0(t� t0) + 1
:

At any initial point (t0; x0; y0) 2 C3 this target ODE is regular;
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2. An ODE
nx00x = (n� 1)(x0)2

not speci�c to initial point (t0; x0; y0) and satis�ed even with the
polynomial expressions x(k) = Pk(t; x; y); k = 1; 2; :::; but singular
for the initial values with x0 = 0;

3. An ODE
x0 = cn(t� t0)n�1:

The �rst and the third are regular for any (t0; x0; y0) 2 C3 illustrating
the claim of the Conjecture. At that the third is not merely rational,
but an explicit polynomial ODE (which is possible because its polyno-
mial solution x = x0(y0(t� t0)+1)n does not have points where scalar
elementariness is violated). However the second one does not illustrate
the claim of the Conjecture being singular for the initial points of the
system where x0 = 0: Not any arbitrarily obtained target ODE (16)
illustrates the Conjecture.

As we will see in Appendix 1, the challenge of proving the Conjecture
is in that so far the only known way of converting the general polynomial
system of ODEs into one ODE yields a target ODE (6) not guaranteeing its

regularity
@Q

@Xn

����
t=t0

6= 0.

The Conjecture vs. a problem of regulariza-
tion of an ODE

We have seen that a function x(t) holomorphic at some point t0 may satisfy
many di¤erent ODEs (6): either regular or singular at this point. According
to the Theorem in Appendix 1 we can assume that any polynomial system
(7) is already transformed into an implicit polynomial ODE (6), regular or
singular at a given point t0. With that in mind, we can pose the following
question.

Question 1 Let a holomorphic function x(t) satisfy an implicit poly ODE

P (t; x; x0; :::; x(m)) = 0
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which happened to be singular at t0. Is it always possible to replace the ODE
P = 0 singular at t0 with another implicit poly ODE

Q(t; x; x0; :::; x(n)) = 0

satis�ed by x(t) yet regular at t0?

Sometimes it is possible, but generally the answer is no, because some
functions like (9) or (11) can satisfy only those implicit poly ODEs (6) which
are singular at t = 0: The following examples demonstrates it for quite similar
ODEs.

Example 5 The (entire) function x(t) = tet satis�es the ODE

P = tx0 � tx� x = 0

singular at t = 0. However x(t) satis�es also the ODE

Q = x00 � 2x0 + x = 0

regular at t = 0.

Example 6 The (entire) function x(t) =
et � 1
t

satis�es ODE

P = tx0 � tx+ x� 1 = 0 (17)

singular at t = 0. However it�s proven that there can not exist a polynomial
ODE regular at t = 0 satis�ed by this function. Nor can it satisfy a polyno-
mial ODE with a nonzero constant factor at the leading derivative �because
unlike in the Example 5, here function x(t) does have a point of violation of
its scalar elementariness.

Example 7 The (entire) function x(t) =
et � 1
t

also satis�es ODE

x00(x� 1)(t� 1)� (tx0 � 2x0 + x)(x0 � 1) = 0

singular at t = 1 (with any x; in particular with x(1) = e � 1). However,
according to Example 6, x(t) satis�es also the ODE (17) regular at t = 1
(though with a non-constant nonzero factor t at the leading derivative). This
x(t) however can not satisfy a polynomial ODE with a constant nonzero fac-
tor at the leading derivative �because unlike in the Example 5, here function
x(t) does have a point of violation of its scalar elementariness.
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Which kind of singular ODEs (6) may be replaced (regularized) at a
particular point, and which may not? Here is a hypothetical Criterion how
this question possibly depends on the Conjecture.

Criterion 1 If the Conjecture is true, a criterion that an implicit poly ODE
(6) satis�ed by x(t) and singular at point t = t0 may be replaced with a
poly ODE regular at t = t0 is that x(t) at this point satis�es some explicit
polynomial system (7).

If the Conjecture is false...

As we see from the Introduction and the Comparison Table 1, if the Conjec-
ture is false and the competing de�nitions of elementariness are not equiva-
lent, the properties following from these de�nitions create a rather compli-
cated picture of the reality (if it is the reality).
If the Conjecture is false, it means that there exists a system of polynomial

ODEs (7) (demonstrating vector-elementariness of (t; x(t); y(t); z(t); :::))
and such initial values (t0; x0; y0; z0; :::) of the polysystem (7), that (t0; x0; x1; :::)
(the image of (t0; x0; y0; z0; :::)) is the point of violation of scalar elemen-
tariness of the function x(t), i.e. that x(t) can satisfy only singular rational
ODEs (5).
In order to �nd such a counterexample for the Conjecture, it makes sense

to consider the examples of functions (9) and (11) for which a loss of their
scalar elementariness at t = 0 has already been established, and to investigate
if they can satisfy some polynomial system (7) at t = 0. However this is so
far an open question too.
Then, if we �nd an example of function x(t), which violates the scalar

elementariness at point t0, yet remains vector elementary at the same point,
we can pose a question whether the vector elementariness may be violated
at certain points.

Remark 14 If the Conjecture is false so that scalar- and vector-elementariness
are not equivalent, we can replace these both de�nitions with weak vector-
and weak scalar-elementariness respectively by dropping the condition of reg-
ularity in the target rational ODEs. The weak vector- and weak scalar-
elementariness are equivalent (as proved in Appendix 1) so that we can oper-
ate simply with the concept of weak elementariness (both in vector and scalar
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sense). The special points currently de�ned as the point of violation of the
scalar- (and possibly vector-) elementariness would stay in this theory anyway
as proven facts.
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Appendix 1: Reduction of a poly system to an
implicit ODE

Here we are to prove the "simpli�ed version" of the Conjecture ignoring the
requirement of the regularity of the target ODE (6). The proof (whose idea
belongs to the late Prof. Harley Flanders4) capitalizes on the fact from the
combinatorics that the number �(n) of partitions of n grows faster than the
number of all monomials in r variables of degree � n (for any �xed r) �the
Lemma 1 in Appendix 2.

Theorem 1 For every component, say x(t) , of a polynomial system of
ODEs (7) there exists an implicit polynomial ODE (6) the same for all points
(t0; x0; y0; z0; :::) satis�ed by x(t).

Proof 1 According to the Fundamental transforms, the source rational sys-
tem at a regular point may be transformed into polynomial systems of various
structures including those whose right hand sides are the polynomials of de-
gree 2, and then the degrees of polynomials Pk in (13) grow by 1. With
that in mind, re-write the fundamental sequence (13) in a slightly di¤erent
notation

x0 = F2(t; x; y; z; :::)
:::
x(k) = Fk+1(t; x; y; z; :::)
x(k+1) = Fk+2(t; x; y; z; :::)
:::

so that the index k in polynomials Fk stands for its highest degree (in one
of its variables). At that, assume that F1 = At + Bx �an arbitrary linear
form5 with some constants A; B (not both zeros).
Consider a set

Sn = f (�1; :::; �n)i j �1 + 2�2 + :::+ n�n = ng

of partition vectors vi = (�1; :::; �n)i; i = 1; 2; 3; :::; �(n) each representing
partitions of n, and consider special monomials F�11 F

�2
2 :::F

�n
n ; keeping in

4From the private communications in 2004
5We introduced these free coe¢ cients A and B merely to demonstrate that the proof

works with arbitrary A and B:We do not know how to utilize these coe¢ cients for ad-
vancing the Conjecture.We can assume as well that F1 = x o r F1 = t:
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mind the bijection
(�1; :::; �n)() F�11 F

�2
2 :::F

�n
n :

Observe, that after completion of all the operations inside, every monomial
F�11 F

�2
2 :::F

�n
n becomes an n�degree polynomial in t; x; y; z; ::: whose mono-

mials are t�x�y
z�:::; (�+�+
+�+::: � n): The number of such monomials
t�x�y
z�::: does not exceed Crn+r.
According to the Lemma 1 (Appendix 2), for any given number r of vari-

ables, there exists such a number nr that for any n > nr the number
�(n) of di¤erent partitions (�1; :::; �n) exceeds the number Crn+r of all degree
monomials ft�x�y
z�:::g in r variables with the degrees � n. Every mono-
mial F�11 F

�2
2 :::F

�n
n is an n�degree polynomial comprised of the monomials

ft�x�y
z�:::g: Therefore the set of monomials fF�11 F�22 :::F�nn g is linearly de-
pendent in ft�x�y
z�:::g so that there exist a linear combination with nonzero
coe¢ cients a�1;:::;�n 6= 0 such thatX

(�1;:::;�n)

a�1;:::; �nF
�1
1 F

�2
2 :::F

�n
n = 0 (18)

corresponding to the polynomial ODE

U(t; x; x0; :::; x(n�1)) =
X

(�1;:::; �n)

a�1;:::; �n(At+Bx)
�1X�2

1 :::X
�n
n�1 = 0 (19)

where, as usual Xn = x
(n):

Impractical just like the method of elimination via the resultants, this
Theorem too does not o¤er a feasible method for obtaining the target ODE.
However, unlike the resultants, this Theorem guarantees that the target im-
plicit nonzero polynomial ODE U = 0 does exist.
The polynomial U must not necessarily contain all the derivatives Xi up

to the highest Xn�1. Let k be the highest order of the derivatives Xi in
U : k � n � 1. Re-write U by degrees of Xk : Xk; X

2
k ; :::; X

�
k : The degree

of the polynomial for Xk is k + 1; therefore (k + 1)� � n and � � n

k + 1
:

U =

�X
i=0

pi(t; X; X1; :::; Xk�1)X
i
k = 0 (20)

where coe¢ cients pi(t; X; X1; :::; Xk�1) are polynomials.
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Remark 15 The polynomial U is satis�ed not merely by the solution x(t);
but by the polynomials Fk so that

U(t; x; F2(t; x; y; z; :::); :::; Fn�1(t; x; y; z; :::))

is a zero polynomial in t; x; y; z; ::: . At that the condition of the regularity
of U

@U(t; X; X1; :::; Xk)

@Xk

(21)

generally does depend on the initial values t; x; x0; :::; x(k) and through

them depends on the initial point (t; x; y; z; :::) �unless
@U

@Xk

happened to

be a nonzero constant (like in the case 1 below).

Given the properties of the partitions of n, the following outcomes are
possible:

1. The highest part of n in the linear combination (18) is n so that there
is a monomial with �1 = ::: = �n�1 = 0; �n = 1; while the highest
order k of the derivatives is n � 1 and this derivative Xn�1 appears
only linearly. Then the polynomial coe¢ cient p1 at Xn�1 in (20) must
have a degree 0 being reduced to a const 6= 0: At that not merely is
U linear in Xn�1; but the critical value

@U(t; x; x0; :::; x(n�1))

@Xn�1
= p1 = const 6= 0

so that the implicit polynomial U turns into an explicit polynomial
ODE x(n�1) = ::: (10) thus proving a statement even stronger than
the Conjecture. As it was noted earlier, this particular case cannot take
place always, and the Conjecture would be false if it claimed so. When
p1 = const 6= 0, the function x(t) does not have the points of violation
of scalar elementariness at all (due to the previous Theorems), yet it
does not always take place. For example, the function x(t) (9) has the
point t = 0 where the scalar elementariness is violated, and it satis�es
the polynomial system (15) at all points except at t = 0. Therefore for
the system (15) the outcome can never be this Case 1.

28



2. The highest partition of n in the linear combination (18) is within
[n=2; n � 1] and respectively k 2 [(n � 1)=2; n � 2]: Then U is still
linear in the highest derivatives Xk however now the critical value

@U(t; x; x0; :::; x(k))

@Xk

= p1(t; X; X1; :::; Xk�1)

generally is non-constant, and it�s not known whether p1 is nonzero
at the initial point. The implicit polynomial U turns into an explicit
rational ODE (5) regular or singular at the initial point.

3. The highest partition of n in the linear combination (18) is less than
n=2 so that the ODE (20) for Xk may be nonlinear. Now in order
to obtain an explicit rational ODE (5), it su¢ ces to di¤erentiate (20)

applying the operator
d

dt

@U

@Xk

x(k+1) +
@U

@Xk�1
x(k) + :::+

@U

@T
= 0:

However after di¤erentiation
d

dt
, this new ODE may not necessarily

be satis�ed with polynomials Fk (though we do not know if this fact
is helpful for proving the Conjecture). We can avoid this Case 3 at
all if we modify the proof of the Theorem choosing n so big that even
�(n=2) > Crn+r : then �n = 1 so that even the set of monomials
fF�11 F�22 :::Fng is linearly dependent in ft�x�y
z�:::g:

Conclusion 3 This theorem proves the Conjecture with the following limi-
tation. The critical factor p1(t; t; x; x0; :::; x(k)) may be re-written into a
polynomial of (t; x; y; z; :::)

p1(t; t; x; x
0; :::; x(k)) = q1(t; x; y; z; :::)

which generally speaking is not a const. If it happens that p1 = const 6= 0;
the Conjecture is proved. Otherwise q1(t; x; y; z; :::) is a nonzero polyno-
mial so that q1(t0; a; b; c; :::) = 0 de�nes a manifold F in the phase space
(t0; a; b; c; :::) at points of which the critical factor p1 = 0. The statement
of the Conjecture is made for the entire space Cm+1, but it is proved here for
Cm+1nF :

29



Remark 16 If one ODE (19) is found, in�nitely many of them may be ob-

tained by di¤erentiation
�
d

dt

�N
of (19)

U(t; x; x0; :::; x(n�1)) = 0

x(n)
@U

@Xn�1
+Q0(t; x; x

0; :::; x(n�1)) = 0 (22)

x(n+1)
@U

@Xn�1
+Q1(t; x; x

0; :::; x(n)) = 0

:::

x(n+N)
@U

@Xn�1
+QN(t; x; x

0; :::; x(n+N�1)) = 0 (23)

:::

where QN (N = 0; 1; ::::) denotes some polynomials in the speci�ed
variables. Unlike (19), all of these equations are linear in the leading deriv-
ative x(n+N) (the Cases 1 and 2), but they all have the same critical factor
@U

@Xn�1
=
@U(t; x; x0; :::; x(n�1))

@Xn�1
in all equations. Therefore if it happens

that
@U

@Xn�1

����
t=t0

= 0 in one equation (22) making it singular, all the subse-

quent ODEs (23) are singular too.

Remark 17 This method of proof yields the implicit polynomial ODE uni-
versal for all initial points (t; x; y; z; :::): However, as we had discussed
earlier, the target ODE in the Conjecture generally cannot be universal for
all points (t; x; y; z; :::):

Remark 18 This method of proof does not take in consideration the speci�c
initial values (t; x0; x00; :::; x(k)). It�s possible that in some function all
these values x(k)jt=0 = 0 up to high enough k (and nonzero afterwards)6.

As a consequence, the critical factor
@U(t; x; x0; :::; x(k))

@Xk

would reduce to

const; also zero, making (23) singular. Therefore this entire approach which
does not take into consideration how many and which x(k)jt=t0 are nonzeros
cannot lead to the proof of the Conjecture

6If we subtract a segment of the Taylor expansion of a function (i.e. a polynomial)
from that function, we can make zero arbitrary many of its beginning derivatives.
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Appendix 2 : Boundaries of the partition num-
ber

Lemma 1 The number Crn+r of all monomials comprising polynomials of
degree n in r variables, and the number �(n) of partitions of n satisfy the
inequalities

Crn+r < (n+ r)
r < 2

p
n < �(n) (24)

beginning with a big enough n > nr.

Proof 2 The inequality 2
p
n < �(n) is known say from [3], so we must

prove that
(n+ r)r < 2

p
n; or (n+ r)

rp
n < 2;

which is equivalent to proving that

f(n) =
r ln(n+ r)p

n
< ln 2:

Obtain

f 0(n) = r

p
n

n+ r
� ln(n+ r)

2
p
n

n

= r
2n� (n+ r) ln(n+ r)

2(n+ r)n
p
n

:

Beginning from big enough n; a linear function 2n < (n + r) ln(n + r); so

that f 0(n) < 0 and f(n) decreases. Moreover lim
n!1

r ln(n+ r)p
n

= 0 for any

r > 1: Therefore f(n) < ln 2 when n > nr for a big enough nr.

Example 8

r = 2; nr = 13 : C
2
13+2 = 105 > �(13) = 101; but C

2
14+2 = 120 < �(14) = 135:

r = 3; nr = 29 : C
3
29+3 = 4960 > �(29) = 4565; but C

3
30+3 = 5456 < �(30) = 5604:

Appendix 3. Properties of vector-elementary
functions [1]
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1 Polynomial functions
Elementary in all variables everywhere being
trivial examples of multivariate elementary
functions (see item 7 for the non-trivial)

2 Rational functions
Elementary in all variables everywhere except
its points of singularity, being trivial examples
of multivariate elementary functions (see 7)

3
Conventional elementary
functions and some special

Elementary

4
Composition of elementary
in all variables vector-functions

Elementary in all variables
(Theorem 2)

5
Inverse to an elementary in all
variables vector-function

Elementary in all variables
(Theorem 3)

6

An inverse function
Xn(x1; :::; xn�1) de�ned
in implicit equation
F (x1; :::; xn) = 0;
F is elementary in all variables

Elementary in all variables
(Corollary 3)

7
Multivariate
algebraic functions

Elementary at regular points in all variables
exemplifying multivariate elementariness
generally not expressible in rational functions

8 Derivatives of elementary function Elementary

9
Integral

R
f(t; x)dt;

f elementary in t; x
Elementary in t, not necessarily in x: Only one
such example (15) proven non-elementary.

10

Vector-function uk(t; x),
a solution of an IVP
fu0k = fk(u1; :::; un; x) ;
ffkg elementary in all variables

Elementary in t (Theorem 1), not necessarily
in x. Analytical continuation in t is doable
into the domain of regularity of the ODEs

11 lim
n!1

fn(t); all fn(t) elementary Not necessarily elementary

12
P1

n=0 ant
n converging to f(t),

an are arbitrary
Not necessarily elementary. Generally
a method of analytical continuation not known.

13

P1
n=0 ant

n converging to f(t),
an obtained via AD formulas
for elementary ODEs

Elementary. Analytical continuation is doable
via integration into the domain
of regularity of the ODEs

14 Euler�s Gamma function �(x) Not elementary everywhere

15 G(t; x) =
R t
0
ux�1e�udu generating

�(x) so that �(x) = G(1; x)
Elementary in t, non-elementary in x
for all t > 0
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Appendix 4. Unremovable and arti�cial sin-
gularities in ODEs

We have seen that regular functions (say x(t) = tn for natural n) may be

solutions of both singular ODEs (x0 =
nx

t
) and regular ones (x0 = ntn�1)

so that the singularities in the respective ODEs were not a peculiarity of the
proper functions, but something lateral.
We have seen also that some holomorphic entire functions (such as x(t) =

et � 1
t

; x(0) = 1) at certain points may be solutions of only singular ODEs:

the singularities in those ODEs are unremovable, proper to those functions.
Here in this Appendix we are to demonstrate a bizarre fact that not only

can singularities of ODEs be something lateral, but it is possible to arti�cially
plant singularities at any regular points of ODEs. Here is how it is possible
to purposefully corrupt regular ODEs.

Example 9 Consider the simplest IVP for ODE x0 = x; x(0) = 1; for
which it is known that x = x0 = x00 = ::: = x(n) = ::: = et. Observe, that for
any point a this x(t) satis�es also rational ODEs

x00 = x
x� ea
x0 � ea ; x(0) = x0(0) = 1; or

x00 = x
x0 � ea
x� ea ;

because for these initial values above
x� ea
x0 � ea =

et � ea
et � ea � 1: However now

the former holomorphic (linear) ODE turned into singular at an arbitrary
point a while having the same holomorphic solution et: Note that for arbitrary
variables x; x0 the fraction algebraically is irreducible. Only for the initial
values given above and with the prior knowledge that x � x0 the modi�ed
equations reduce to the original linear. For the initial conditions when x0(0) 6=
1; so that x 6= x0 the denominator may turn zero while the numerator is
nonzero, so that both the ODE and its solution are singular at such point a.

Theorem 2 Let an IVP for a rational ODE

x(n) =
P (t; x; :::; x(n�1))

Q(t; x; :::; x(n�1))
; x(k�1)jt=0 = ak (25)
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be regular at t = 0 so that its solution x(t) is holomorphic at t = 0: Let
t = b 6= 0 be some other point where x(t) is holomorphic. Then there exist
other ODEs singular at b yet having the same holomorphic solution x(t):

Proof 3 Di¤erentiate (25) and obtain

x(n+1) =
P1(t; x; :::; x

(n))

Q1(t; x; :::; x(n))
:

Then

x(n+1) =
P1
Q1
� x

(n) � x(n)jt=b
x(n) � x(n)jt=b

=

P1
Q1
�

P
Q
� x(n)jt=b

x(n) � x(n)jt=b
:

Finally

x(n+1) =
P1(t; x; :::; x

(n))(P (t; x; :::; x(n�1))�Q(t; x; :::; x(n�1))x(n)jt=b)
Q1(t; x; :::; x(n))Q(t; x; :::; x(n�1))(x(n) � x(n)jt=b)

:

This ODE is singular at an arbitrary chosen point b, yet its solution x(t) is
holomorphic at t = b.

Conclusion 4 When we are looking for and �nd the target ODEs using an
arbitrary method, the target ODE may happen to be singular due to various
reasons such as having arti�cial singularity demonstrated above.

Appendix 5. The special case which is proven

As Table 2 of the fundamental transforms shows, any polynomial system (7)
may be transformed into the form with squares only. Therefore without losing
generality the Conjecture may be reformulated for a square only system with
m ODEs, but the proof is available only for m = 2:
Observe, that if the system in squares only is written as

x0 = F1(x; y; z) = a1x
2 + b1y

2 + c1z
2

y0 = G1(x; y; z) = a2x
2 + b2y

2 + c2z
2

z0 = H1(x; y; z) = a3x
2 + b3y

2 + c3z
2
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then the Fundamental Sequence for it has simpler recurrent formulas

x0 = F1 = a1x
2 + b1y

2 + c1z
2

: : :

x(n+1) = Fn+1 =
nX
k=0

Ckn(a1FkFn�k + b1GkGn�k + c1HkHn�k)

: : :

where

F0 = x; G0 = y; H0 = z;

y(n+1) = Gn+1 =
nX
k=0

Ckn(a2FkFn�k + b2GkGn�k + c2HkHn�k)

z(n+1) = Hn+1 =
nX
k=0

Ckn(a3FkFn�k + b3GkGn�k + c3HkHn�k):

Conjecture 1 For every component (say u1) of the IVP for polynomial sys-
tem in squares only(

u0k =
mX
i=1

akiu
2
i ; ukjt=t0 = bk; k = 1; :::; m

there exists an IVP for n�order rational ODE

u(n) =
P (t; u; u0; :::; u(n�1))

Q(t; u; u0; :::; u(n�1))
; Q(t; u; u0; :::; u(n�1))

��
t=t0

6= 0

regular at t = t0 and having u1 as a unique solution.

Proof 4 (For m = 2 only). Consider a system

x0 = a1x
2 + b1y

2

y0 = a2x
2 + b2y

2:

If b1 = 0; the target ODE is x0 = a1x2 which proves the Conjecture. Otherwise
assume b1 6= 0:

x0 = a1x
2 + b1y

2; y2 = (x0 � a1x2)=b1

y0 = a2x
2 + b2y

2; y0 = a2x
2 +

b2
b1
(x0 � a1x2)
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Looking at y0, observe that all derivatives y(n) depend on x and its derivatives
only, and they may be expressed as polynomials Gn: y(n) = Gn(x; x0; ::: x(n));
n = 1; 2; ::: Utilizing this, di¤erentiate the �rst equation:

x(n+1) = a1(x
2)(n) + b1(y

2)(n) =

= a1(x
2)(n) + 2b1(yy

(n) + ny0y(n�1) + :::)

= a1(x
2)(n) + 2b1(yGn + nG1Gn�1 + ::::); n = 1; 2; :::

Now observe that y occurs only in one monomial: the one with factor Gn(x; x0; ::: x(n)) =
y(n). If at least one y(n)jt=t0 6= 0; n = 1; 2; :::; then y may be eliminated
and substituted in the following equations for bigger n, so that we can ob-
tain in�nitely many rational ODE�s in x regular at t = t0: Otherwise, if all
Gnjt=t0 = y(n)jt=t0 = 0; n = 1; 2; :::; then y must be a constant so that the
�rst ODE takes form x0 = a1x

2 + const. That concludes the proof.

Unfortunately, for m > 2 this method of proof does not work. However
this method applies for a more general system.

Proof 5 Consider a system

x0 = p1(t; x) + b1y
2

y0 = p2(t; x) + q2(t; x)y
2

where p1; p2; q2 are arbitrary polynomials in t; x and b1 6= 0: Then

x0 = p1(t; x) + b1y
2 y2 = (x0 � p1(t; x))=b1

y0 = p2(t; x) + q2(t; x)y
2 y0 = p2(t; x) +

q2(t; x)

b1
(x0 � p1(t; x)):

Again observe that all derivatives y(n) depend on t; x and its derivatives only,
and they may be expressed as polynomials Gn: y(n) = Gn(t; x; x

0; ::: x(n));
n = 1; 2; ::: Utilizing this, di¤erentiate the �rst equation:

x(n+1) = (p1(t; x))
(n) + b1(y

2)(n) =

= (p1(t; x))
(n) + 2b1(yy

(n) + ny0y(n�1) + :::) =

= (p1(t; x))
(n) + 2b1(yGn + nG1Gn�1 + ::::); n = 1; 2; :::

The rest of the proof is the same as before.
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